Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For which values of the Boolean variables \(x,y\), and \(z\) does

\(\begin{array}{l}{\bf{a)x + y + z = xyz?}}\\{\bf{b)x(y + z) = x + yz?}}\\{\bf{c)\bar x\bar y\bar z = x + y + z?}}\end{array}\)

Short Answer

Expert verified
  1. The given equation \({\bf{x + y + z = xyz}}\) holds for \((0,0,0),(1,1,1)\)
  2. The given equation \({\bf{x(y + z) = x + yz}}\) holds for

\((0,0,0),(0,0,1),(0,1,0),(1,0,1),(1,1,0),(1,1,1)\)

  1. The given equation has no solution.

Step by step solution

01

Definition

The complement of an element: \({\bf{\bar 0 = 1}}\) and \({\bf{\bar 1 = 0}}\)

The Boolean sum \({\bf{ + }}\) or \(OR\) is \({\bf{1}}\) if either term is \({\bf{1}}\).

The Boolean product \( \cdot \) or \(AND\) is \({\bf{1}}\) if both terms are \({\bf{1}}\).

02

Using the Boolean sum and product

(a)

\({\bf{x + y + z = xyz}}\)

Now create a table for all possible values of \(x,y\) and \(z\).

\(\begin{array}{*{20}{r}}{\bf{x}}&{\bf{y}}&{\bf{z}}&{{\bf{x + y}}}&{{\bf{xy}}}&{{\bf{x + y + z}}}&{{\bf{xyz}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}\end{array}\)

Then note that \({\bf{x + y + z}}\) contains the same value as \({\bf{xyz}}\) in the first and last row.

Hence it corresponds with \({\bf{x = y = z = 0}}\) and \({\bf{x = y = z = 1}}\).

03

Using the Boolean sum and product

(b)

\({\bf{x(y + z) = x + yz}}\)

Now create a table for all possible values of \(x,y\) and \(z\).

\(\begin{array}{*{20}{r}}{\bf{x}}&{\bf{y}}&{\bf{z}}&{{\bf{y + z}}}&{{\bf{yz}}}&{{\bf{x(y + z)}}}&{{\bf{x + yz}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}\end{array}\)

Then note that \({\bf{x(y + z)}}\) contains the same value as \({\bf{x + yz}}\) in the rows.

So, it corresponding to \(x,y,z{\bf{ = }}(0,0,0),(0,0,1),(0,1,0),(1,0,1),(1,1,0),(1,1,1)\).

04

Using the Boolean sum and product

(c)

\({\bf{\bar x\bar y\bar z = x + y + z}}\)

Now create a table for all possible values of \(x,y\) and \(z\).

\(\begin{array}{*{20}{c}}{\bf{x}}&{\bf{y}}&{\bf{z}}&{{\bf{x + y}}}&{{\bf{\bar x}}}&{{\bf{\bar y}}}&{{\bf{\bar z}}}&{{\bf{\bar x\bar y}}}&{{\bf{\bar x\bar y\bar z}}}&{{\bf{x + y + z}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}\end{array}\)

Then note that \({\bf{\bar x\bar y\bar z}}\) never contains the same value as \({\bf{x + y + z}}\).

Therefore, the given equation has no solutions.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free