Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Express each of the Boolean functions in Exercise 3 using the operator \( \downarrow \).

Short Answer

Expert verified

The required results are

  1. \(\left( {\left( {\left( {x \downarrow y} \right) \downarrow \left( {x \downarrow y} \right)} \right) \downarrow z} \right)\left( {\left( {\left( {x \downarrow y} \right) \downarrow \left( {x \downarrow y} \right)} \right) \downarrow z} \right)\).
  2. \(\left( {\left( {x \downarrow z} \right) \downarrow \left( {x \downarrow z} \right) \downarrow \left( {\left( {x \downarrow z} \right) \downarrow \left( {x \downarrow z} \right)} \right)} \right) \downarrow \left( {y \downarrow y} \right)\).
  3. \(x\)
  4. \(\left( {x \downarrow x} \right) \downarrow \left( {\left( {y \downarrow y} \right) \downarrow \left( {y \downarrow y} \right)} \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complements of an elements\(\overline 0 = 1\)and\(\overline 1 = 0\).

The Boolean sum + or OR is 1 if either term is 1.

The Boolean product (.) or AND is 1 if both terms are 1.

The NAND operator | is 1 if either term is 0.

The NOR operator \( \downarrow \)is 1 if both terms are 0.

02

Find the solution for part (a).

a)

Use the following results to express the Boolean functions using the operator \( \downarrow \).

  1. \(\overline x = x \downarrow x\)
  2. \(xy = \left( {x \downarrow x} \right) \downarrow \left( {y \downarrow y} \right)\)
  3. \(x + y = \left( {x \downarrow y} \right) \downarrow \left( {x \downarrow y} \right)\)

Consider the function, \(F\left( {x,y,z} \right) = x + y + z\).

Express it using \( \downarrow \)and by using the above results as follows:

\(\begin{aligned}{c}F\left( {x,y,z} \right) &= x + y + z\\& = \left( {x + y} \right) + z\\ &= \left( {\left( {x + y} \right) \downarrow z} \right)\left( {\left( {x + y} \right) \downarrow z} \right)\\ &= \left( {\left( {\left( {x \downarrow y} \right) \downarrow \left( {x \downarrow y} \right)} \right) \downarrow z} \right)\left( {\left( {\left( {x \downarrow y} \right) \downarrow \left( {x \downarrow y} \right)} \right) \downarrow z} \right)\end{aligned}\)

03

Determine the result of part (b).

b)

Consider the function, \(F\left( {x,y,z} \right) = \left( {x + z} \right)y\)

Express it using \( \downarrow \)and by using the above results as follows:

\(\begin{aligned}{c}F\left( {x,y,z} \right) &= \left( {x + z} \right)y\\ &= \left( {x + z} \right) \downarrow \left( {x + z} \right) \downarrow \left( {y \downarrow y} \right)\\ &= \left( {\left( {x \downarrow z} \right) \downarrow \left( {x \downarrow z} \right) \downarrow \left( {\left( {x \downarrow z} \right) \downarrow \left( {x \downarrow z} \right)} \right)} \right) \downarrow \left( {y \downarrow y} \right)\end{aligned}\)

04

Evaluate the result of part (c).

c)

Consider the function, \(F\left( {x,y,z} \right) = x\).

Here, \(x\) contains no operators and thus \(x\) is represented as \(x\) itself.

05

Find the solution of part (d).

(d)

Consider the function, \(F\left( {x,y,z} \right) = x\overline y \).

Express it using \( \downarrow \)and by using the above results as follows:

\(\begin{aligned}{c}F\left( {x,y,z} \right)& = x\overline y \\ &= \left( {x \downarrow x} \right) \downarrow \left( {\overline y \downarrow \overline y } \right)\\ &= \left( {x \downarrow x} \right) \downarrow \left( {\left( {y \downarrow y} \right) \downarrow \left( {y \downarrow y} \right)} \right)\end{aligned}\)

This is the require result.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free