Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Express each of the Boolean functions in Exercise 3 using the operator \( \downarrow \).

Short Answer

Expert verified

The required results are

  1. \(\left( {\left( {\left( {x \downarrow y} \right) \downarrow \left( {x \downarrow y} \right)} \right) \downarrow z} \right)\left( {\left( {\left( {x \downarrow y} \right) \downarrow \left( {x \downarrow y} \right)} \right) \downarrow z} \right)\).
  2. \(\left( {\left( {x \downarrow z} \right) \downarrow \left( {x \downarrow z} \right) \downarrow \left( {\left( {x \downarrow z} \right) \downarrow \left( {x \downarrow z} \right)} \right)} \right) \downarrow \left( {y \downarrow y} \right)\).
  3. \(x\)
  4. \(\left( {x \downarrow x} \right) \downarrow \left( {\left( {y \downarrow y} \right) \downarrow \left( {y \downarrow y} \right)} \right)\).

Step by step solution

01

Definition

The complements of an elements\(\overline 0 = 1\)and\(\overline 1 = 0\).

The Boolean sum + or OR is 1 if either term is 1.

The Boolean product (.) or AND is 1 if both terms are 1.

The NAND operator | is 1 if either term is 0.

The NOR operator \( \downarrow \)is 1 if both terms are 0.

02

Find the solution for part (a).

a)

Use the following results to express the Boolean functions using the operator \( \downarrow \).

  1. \(\overline x = x \downarrow x\)
  2. \(xy = \left( {x \downarrow x} \right) \downarrow \left( {y \downarrow y} \right)\)
  3. \(x + y = \left( {x \downarrow y} \right) \downarrow \left( {x \downarrow y} \right)\)

Consider the function, \(F\left( {x,y,z} \right) = x + y + z\).

Express it using \( \downarrow \)and by using the above results as follows:

\(\begin{aligned}{c}F\left( {x,y,z} \right) &= x + y + z\\& = \left( {x + y} \right) + z\\ &= \left( {\left( {x + y} \right) \downarrow z} \right)\left( {\left( {x + y} \right) \downarrow z} \right)\\ &= \left( {\left( {\left( {x \downarrow y} \right) \downarrow \left( {x \downarrow y} \right)} \right) \downarrow z} \right)\left( {\left( {\left( {x \downarrow y} \right) \downarrow \left( {x \downarrow y} \right)} \right) \downarrow z} \right)\end{aligned}\)

03

Determine the result of part (b).

b)

Consider the function, \(F\left( {x,y,z} \right) = \left( {x + z} \right)y\)

Express it using \( \downarrow \)and by using the above results as follows:

\(\begin{aligned}{c}F\left( {x,y,z} \right) &= \left( {x + z} \right)y\\ &= \left( {x + z} \right) \downarrow \left( {x + z} \right) \downarrow \left( {y \downarrow y} \right)\\ &= \left( {\left( {x \downarrow z} \right) \downarrow \left( {x \downarrow z} \right) \downarrow \left( {\left( {x \downarrow z} \right) \downarrow \left( {x \downarrow z} \right)} \right)} \right) \downarrow \left( {y \downarrow y} \right)\end{aligned}\)

04

Evaluate the result of part (c).

c)

Consider the function, \(F\left( {x,y,z} \right) = x\).

Here, \(x\) contains no operators and thus \(x\) is represented as \(x\) itself.

05

Find the solution of part (d).

(d)

Consider the function, \(F\left( {x,y,z} \right) = x\overline y \).

Express it using \( \downarrow \)and by using the above results as follows:

\(\begin{aligned}{c}F\left( {x,y,z} \right)& = x\overline y \\ &= \left( {x \downarrow x} \right) \downarrow \left( {\overline y \downarrow \overline y } \right)\\ &= \left( {x \downarrow x} \right) \downarrow \left( {\left( {y \downarrow y} \right) \downarrow \left( {y \downarrow y} \right)} \right)\end{aligned}\)

This is the require result.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that \({\bf{x}} \oplus {\bf{y = y}} \oplus {\bf{x}}\).

Let \({\bf{x}}\) and \({\bf{y}}\) belong to \(\left\{ {{\bf{0,1}}} \right\}\). Does it necessarily follow that \({\bf{x = y}}\) if there exists a value \({\bf{z}}\) in \(\left\{ {{\bf{0,1}}} \right\}\) such that,

\(\begin{array}{l}{\bf{a) xz = yz?}}\\{\bf{b) x + z = y + z?}}\\{\bf{c) x}} \oplus {\bf{z = y}} \oplus {\bf{z?}}\\{\bf{d) x}} \downarrow {\bf{z = y}} \downarrow {\bf{z?}}\\{\bf{e) x}}|{\bf{z = y}}|z{\bf{?}}\end{array}\)

A Boolean function \({\bf{F}}\) is called self-dual if and only if \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = }}\overline {{\bf{F}}\left( {{{{\bf{\bar x}}}_{\bf{1}}}{\bf{, \ldots ,}}{{{\bf{\bar x}}}_{\bf{n}}}} \right)} \).

Construct a circuit for a full subtractor using AND gates, OR gates, and inverters. A full subtractor has two bits and a borrow as input, and produces as output a difference bit and a borrow.

Deal with the Boolean algebra \(\{ 0,1\} \) with addition, multiplication, and complement defined at the beginning of this section. In each case, use a table as in Example \(8\).

Verify the zero property.

The Boolean operator \( \oplus \), called the \(XOR\) operator, is defined by \(1 \oplus 1{\bf{ = }}0,1 \oplus 0{\bf{ = }}1,0 \oplus 1{\bf{ = }}1\), and \(0 \oplus 0{\bf{ = }}0\).

Find the cells in a \(K{\bf{ - }}\)map for Boolean functions with five variables that correspond to each of these products.

\(\begin{array}{c}a){x_1}{x_2}{x_3}{x_4}\\b){{\bar x}_1}{x_3}{x_5}\\c){x_2}{x_4}\\d){{\bar x}_3}{{\bar x}_4}\\e){x_3}\\f){{\bar x}_5}\end{array}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free