Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Express each of the Boolean functions in Exercise 3 using the operator \(|\).

Short Answer

Expert verified

The required results are

a) \(\left( {\left( {x|x} \right)|\left( {y|y} \right)} \right)|\left( {\left( {x|x} \right)|\left( {y|y} \right)} \right)|\left( {z|z} \right)\)

b) \(\left( {\left( {\left( {\left( {x|x} \right)|\left( {z|z} \right)} \right)|y} \right)|\left( {\left( {x|x} \right)|\left( {z|z} \right)} \right)|y} \right)\)

c) \(x\)

d) \(\left( {x|\left( {y|y} \right)} \right)|\left( {x|\left( {y|y} \right)} \right)\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complements of an elements\(\overline 0 = 1\)and\(\overline 1 = 0\).

The Boolean sum + or OR is 1 if either term is 1.

The Boolean product (.) or AND is 1 if both terms are 1.

The NAND operator | is 1 if either term is 0.

The NOR operator\( \downarrow \)is 1 if both terms are 0.

02

Find the solution for part (a). (a)

Use the following results to express the Boolean functions using the operator \(|\).

(a) \(\overline x = x|x\)

(b) \(xy = \left( {x|y} \right)|\left( {x|y} \right)\)

(c) \(x + y = \left( {x|x} \right)|\left( {y|y} \right)\)

Consider the function, \(F\left( {x,y,z} \right) = x + y + z\)

Express the function using NAND operator:

\(\begin{eqnarray}F\left( {x,y,z} \right) &= & x + y + z\\&=& \left( {x|x} \right)|\left( {y|y} \right) + z\\&= & \left( {\left( {x|x} \right)|\left( {y|y} \right)} \right)|\left( {\left( {x|x} \right)|\left( {y|y} \right)} \right)|\left( {z|z} \right)\end{eqnarray}\)

03

Determine the result of part (b). (b)

Consider the function, \(F\left( {x,y,z} \right) = \left( {x + z} \right)y\)

Express it using \(|\)and by using the above results as follows:

\(\begin{eqnarray}F\left( {x,y,z} \right) &=& \left( {x + z} \right)y\\ &=& \left( {x + z} \right)|y{\rm{)}}|\left( {x + z} \right)|y{\rm{)}}\\ &=& \left( {\left( {\left( {x|x} \right)|\left( {z|z} \right)} \right)|y} \right)|\left( {\left( {x|x} \right)|\left( {z|z} \right)} \right)|y{\rm{)}}\end{eqnarray}\)

04

Evaluate the result of part (c). (c)

Here, \(F\left( {x,y,z} \right) = x\).

Here, \(x\) contains no operators and thus \(x\) is represented as \(x\) itself.

05

Find the solution of part (d). (d)

Consider the function,\(F\left( {x,y,z} \right) = x\overline y \).

Express it using \(|\)and by using the above results as follows:

\(\begin{eqnarray}F\left( {x,y,z} \right) &=& x\overline y \\ &=& \left( {x|\overline y } \right)|\left( {x|\overline y } \right)\\ &=& \left( {x|\left( {y|y} \right)} \right)|\left( {x|\left( {y|y} \right)} \right)\end{eqnarray}\)

This is the required result.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free