Chapter 12: Q16SE (page 844)
Determine whether the set \( \odot \) is functionally complete.
Short Answer
The set \( \odot \) is not functionally complete.
Chapter 12: Q16SE (page 844)
Determine whether the set \( \odot \) is functionally complete.
The set \( \odot \) is not functionally complete.
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that the relation \( \le \) is a partial ordering on the set of Boolean functions of degree \(n\).
Show that each of these identities holds.
\({\bf{a)}}\)\({\bf{x}} \odot {\bf{x = 1}}\)
\({\bf{b)}}\)\({\bf{x}} \odot {\bf{\bar x = 0}}\)
\({\bf{c)}}\)\({\bf{x}} \odot {\bf{y = y}} \odot {\bf{x}}\)
What values of the Boolean variables \({\bf{x}}\) and \({\bf{y}}\) satisfy \({\bf{xy = x + y}}\)\(?\)
Let \({\bf{x}}\) and \({\bf{y}}\) belong to \(\left\{ {{\bf{0,1}}} \right\}\). Does it necessarily follow that \({\bf{x = y}}\) if there exists a value \({\bf{z}}\) in \(\left\{ {{\bf{0,1}}} \right\}\) such that,
\(\begin{array}{l}{\bf{a) xz = yz?}}\\{\bf{b) x + z = y + z?}}\\{\bf{c) x}} \oplus {\bf{z = y}} \oplus {\bf{z?}}\\{\bf{d) x}} \downarrow {\bf{z = y}} \downarrow {\bf{z?}}\\{\bf{e) x}}|{\bf{z = y}}|z{\bf{?}}\end{array}\)
A Boolean function \({\bf{F}}\) is called self-dual if and only if \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = }}\overline {{\bf{F}}\left( {{{{\bf{\bar x}}}_{\bf{1}}}{\bf{, \ldots ,}}{{{\bf{\bar x}}}_{\bf{n}}}} \right)} \).
Which of these functions are self-dual?
\(\begin{array}{l}\left. {\bf{a}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = x\\\left. {\bf{b}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{xy + \bar x\bar y}}\\\left. {\bf{c}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{x + y}}\\\left. {\bf{d}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{xy + \bar xy}}\end{array}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.