Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How many cells in a \({\bf{K}}\)-map for Boolean functions with six variables are needed to represent \({{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{\bar x}}_{\bf{1}}}{{\bf{x}}_{\bf{6}}}{\bf{, }}{{\bf{\bar x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{\bar x}}_{\bf{6}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}\), and \({{\bf{x}}_{\bf{1}}}{{\bf{\bar x}}_{\bf{2}}}{{\bf{x}}_{\bf{4}}}{{\bf{\bar x}}_{\bf{5}}}\), respectively\({\bf{?}}\)

Short Answer

Expert verified

\({{\bf{x}}_{\bf{1}}}\)requires \({\bf{32}}\) cells

\({{\bf{\bar x}}_{\bf{1}}}{{\bf{x}}_{\bf{6}}}\)requires \({\bf{16}}\) cells.

\({{\bf{\bar x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{\bar x}}_{\bf{6}}}\)requires \({\bf{8}}\) cells.

\({{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}\)requires \({\bf{4}}\) cells.

\({{\bf{x}}_{\bf{1}}}{{\bf{\bar x}}_{\bf{2}}}{{\bf{x}}_{\bf{4}}}{{\bf{\bar x}}_{\bf{5}}}\) requires \({\bf{4}}\) cells.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1:Definition

Product rule: If one event can occur in \({\bf{m}}\) ways \({\bf{AND}}\) a second event can occur in \({\bf{n}}\) ways, then the number of ways that the two events can occur in sequence is then \({\bf{m \times n}}\)

A \({\bf{K}}\)-map for a function in six variables will contain \(2\) possible values for each variable \({\bf{x}}\) and \({\bf{\bar x}}\) for every variable \({\bf{x}}\) ).

02

Using the product rule

Use the product rule:

\(\underbrace {{\bf{2 \times 2 \times 2 \times 2 \times 2 \times 2}}}_{{\bf{6 repetitions }}}{\bf{ = }}{{\bf{2}}^{\bf{6}}}{\bf{ = 64}}\)

A \({\bf{K}}\)-map for a function in six variables then contains \({\bf{64}}\) cells.

Moreover, if an expression contains \({\bf{k}}\) variables, then these \({\bf{k}}\) variables are fixed, but the remaining variables can still take on \({\bf{2}}\) values each, which implies that there are then \({{\bf{2}}^{{\bf{6 - k}}}}\) cells required for an expression containing \({\bf{k}}\) variables.

\(\underbrace {{\bf{1 \times \ldots \times 1}}}_{{\bf{k repetitions }}}{\bf{ \times }}\underbrace {{\bf{2 \times \ldots \times 2}}}_{{\bf{6 - k repetitions }}}{\bf{ = }}{{\bf{2}}^{{\bf{6 - k}}}}\)

03

Finding cells

\({{\bf{x}}_{\bf{1}}}\)contains \({\bf{k = 1}}\) variable, which then requires \({{\bf{2}}^{{\bf{6 - 1}}}}{\bf{ = }}{{\bf{2}}^{\bf{5}}}{\bf{ = 32}}\) cells

\({{\bf{\bar x}}_{\bf{1}}}{{\bf{x}}_{\bf{6}}}\)contains \({\bf{k = 2}}\) variables, which then requires \({{\bf{2}}^{{\bf{6 - 2}}}}{\bf{ = }}{{\bf{2}}^{\bf{4}}}{\bf{ = 16}}\) cells.

\({{\bf{\bar x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{\bar x}}_{\bf{6}}}\)contains \({\bf{k = 3}}\) variables, which then requires \({{\bf{2}}^{{\bf{6 - 3}}}}{\bf{ = }}{{\bf{2}}^{\bf{3}}}{\bf{ = 8}}\) cells.

\({{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}\)contains \({\bf{k = 4}}\) variables, which then requires \({{\bf{2}}^{{\bf{6 - 4}}}}{\bf{ = }}{{\bf{2}}^{\bf{2}}}{\bf{ = 4}}\) cells.

\({{\bf{x}}_{\bf{1}}}{{\bf{\bar x}}_{\bf{2}}}{{\bf{x}}_{\bf{4}}}{{\bf{\bar x}}_{\bf{5}}}\) contains \({\bf{k = 4}}\) variables, which then requires \({{\bf{2}}^{{\bf{6 - 4}}}}{\bf{ = }}{{\bf{2}}^{\bf{2}}}{\bf{ = 4}}\) cells.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free