Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that each of these identities holds.

\({\bf{a)}}\)\({\bf{x}} \odot {\bf{x = 1}}\)

\({\bf{b)}}\)\({\bf{x}} \odot {\bf{\bar x = 0}}\)

\({\bf{c)}}\)\({\bf{x}} \odot {\bf{y = y}} \odot {\bf{x}}\)

Short Answer

Expert verified

\({\bf{a)}}\) The given equation \({\bf{x}} \odot {\bf{x = 1}}\) holds.

\({\bf{b)}}\) The given equation \({\bf{x}} \odot {\bf{\bar x = 0}}\)holds.

\({\bf{c)}}\) The given equation \({\bf{x}} \odot {\bf{y = y}} \odot {\bf{x}}\) holds.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complement of an element: \({\bf{\bar 0 = 1}}\) and \({\bf{\bar 1 = 0}}\).

The Boolean sum \({\bf{ + }}\) or \({\bf{OR}}\) is \({\bf{1}}\) if either term is \({\bf{1}}\).

The Boolean product \( \bullet \) or \({\bf{AND}}\) is \({\bf{1}}\) if both terms are \({\bf{1}}\).

The \({\bf{NOR}}\) operator \( \downarrow \) is \({\bf{1}}\) if both terms are \({\bf{0}}\).

The \({\bf{XOR}}\) operator \( \oplus \) is \({\bf{1}}\) if one of the terms is \({\bf{1}}\) (but not both).

The \({\bf{NAND}}\) operator \(\mid \) is \({\bf{1}}\) if either term is \({\bf{0}}\).

The Boolean operator \( \odot \) is \({\bf{1}}\) if both terms have the same value.

02

Using the Boolean operator

It is given that \({\bf{x}} \odot {\bf{x = 1}}\).

Now create a table for all possible values of \({\bf{x, y}}\) and \({\bf{z}}\).

The Boolean operator \( \odot \) is \({\bf{1}}\) if both terms have the same value.

\(\begin{array}{*{20}{r}}{\bf{x}}&{{\bf{ x}}}&{{\bf{ x}} \odot {\bf{x}}}&{\bf{1}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}\end{array}\)

Then note that the last two columns of the table are identical.

Hence, it gives \({\bf{x}} \odot {\bf{x = 1}}\).

03

Using the Boolean operator

(b)

It is given that \({\bf{x}} \odot {\bf{\bar x = 0}}\).

Now create a table for all possible values of \({\bf{x, y}}\) and \({\bf{z}}\).

The Boolean operator \( \odot \) is \({\bf{1}}\) if both terms have the same value.

\(\begin{array}{*{20}{r}}{\bf{x}}&{{\bf{ \bar x}}}&{{\bf{ x}} \odot {\bf{\bar x}}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\end{array}\)

Then note that the last two columns of the table are identical.

Hence, it gives \({\bf{x}} \odot {\bf{\bar x = 0}}\).

04

Using the Boolean operator

It is given that \({\bf{x}} \odot {\bf{y = y}} \odot {\bf{x}}\).

Now create a table for all possible values of \({\bf{x, y}}\) and \({\bf{z}}\).

The Boolean operator \( \odot \) is \({\bf{1}}\) if both terms have the same value.

\(\begin{array}{*{20}{r}}{\bf{x}}&{{\bf{ y}}}&{{\bf{ x}} \odot {\bf{y}}}&{{\bf{ y}} \odot {\bf{x}}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}\end{array}\)

Then note that the last two columns of the table are identical.

Hence, it gives \({\bf{x}} \odot {\bf{y = y}} \odot {\bf{x}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free