Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Express each of the Boolean functions in Exercise 12 using the operators + and -.

Short Answer

Expert verified

The results are:

(a) \(x + y + z\)

(b) \(x + {\rm{(}}\overline {y + \overline {\overline {\left( {x + z} \right)} } } \)

(c) \(\overline {x + \overline y } \)

(d) \(\overline {x + \overline {\left( {x + \overline y + \overline z } \right)} } \)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complements of elements \(\overline 0 = 1\) and\(\overline 1 = 0\).

The Boolean sum + or OR is 1 if either term is 1.

The Boolean product (.) or AND is 1 if both terms are 1.

Law of the double complement\(\overline{\overline {\bf{x}}} {\bf{ = x}}\).

De Morgan’s laws

\(\begin{array}{l}\overline {{\bf{xy}}} {\bf{ = }}\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} \\\overline {{\bf{(x + y)}}} {\bf{ = }}\overline {\bf{x}} \overline {\bf{y}} \end{array}\)

02

Solution for part (a).(a)

Here given \(x + \,\,y\,\, + z\).

This \(x + \,\,y\,\, + z\) is already expressed using the operations \( + \) and \( - \).

Hence, it doesn't express again the Boolean function

03

Evaluate the solution of part (b).(b)

The result is

\(\begin{eqnarray}x + \overline y \left( {\overline x + z} \right) &=& x + \overline{\overline {\overline y \left( {\overline x + z} \right)}} \\ &=& x + {\rm{(}}\overline {y + \left( {\overline {\overline {x + z} } } \right)} \end{eqnarray}\)

04

Determine the solution for part (c).(c)

Here, it is given \(\overline {x + \overline y } \)

Thus, \(\overline {x + \overline y } \) is already expressed using the operations \( + \) and \( - \).

Thus, we don’t express again the Boolean function.

05

Determine the solution for part (d).(d)

Now the result of \(\overline x \left( {x + \overline y + \overline z } \right)\).

\(\begin{eqnarray}\overline x \left( {x + \overline y + \overline z } \right) &=& \overline x \overline{\overline {\left( {x + \overline y + \overline z } \right)}} \\ &=&\overline {x + \overline {\left( {x + \overline y + \overline z } \right)} } \end{eqnarray}\)

Therefore, these are the Boolean function.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free