Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that \({\bf{x}} \odot {\bf{y = xy + \bar x\bar y}}\).

Short Answer

Expert verified

The given \({\bf{x}} \odot {\bf{y = xy + \bar x\bar y}}\) is proved.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complement of an element: \({\bf{\bar 0 = 1}}\) and \({\bf{\bar 1 = 0}}\).

The Boolean sum \({\bf{ + }}\) or \({\bf{OR}}\) is \(1\) if either term is \(1\).

The Boolean product or \({\bf{AND}}\) is \(1\) if both terms are \(1\).

The \({\bf{NOR}}\) operator \( \downarrow \) is \(1\) if both terms are \(0\).

The \({\bf{XOR}}\) operator \( \oplus \) is \(1\) if one of the terms is \(1\) (but not both).

The \({\bf{NAND}}\) operator \(\mid \) is \(1\) if either term is \(0\).

The Boolean operator \( \odot \) is \(1\) if both terms have the same value.

02

Table of values

Given is \({\bf{x}} \odot {\bf{y = xy + \bar x\bar y}}\).

Now create a table for all possible values of \({\bf{x, y}}\) and \({\bf{z}}\).

\(\begin{array}{*{20}{r}}{\bf{x}}&{\bf{y}}&{{\bf{xy}}}&{{\bf{\bar x}}}&{{\bf{\bar y}}}&{{\bf{\bar x\bar y}}}&{{\bf{x}} \odot {\bf{y}}}&{{\bf{xy + \bar x\bar y}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\end{array}\)

Then note that the last two columns of the table are identical.

Hence, it gives \({\bf{x}} \odot {\bf{y = xy + \bar x\bar y}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Draw the Hasse diagram for the poset consisting of the set of the \({\bf{16}}\)Boolean functions of degree two (shown in Table \({\bf{3}}\) of Section \({\bf{12}}{\bf{.1}}\)) with the partial ordering \( \le \).

Use the Quine–McCluskey method to simplify the sum-of-products expansions in Example \(4\).

Use a \({\bf{K}}\)-map to find a minimal expansion as a Boolean sum of Boolean products of each of these functions in the variables \({\bf{w, x, y}}\) and \({\bf{z}}\).

\(\begin{array}{l}{\bf{a) wxyz + wx\bar yz + wx\bar y\bar z + w\bar xy\bar z + w\bar x\bar yz}}\\{\bf{b) wxy\bar z + wx\bar yz + w\bar xyz + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{c) wxyz + wxy\bar z + wx\bar yz + w\bar x\bar yz + w\bar x\bar y\bar z + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{d) wxyz + wxy\bar z + wx\bar yz + w\bar xyz + w\bar xy\bar z + \bar wxyz + \bar w\bar xyz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\end{array}\)

Find a Boolean sum containing either x or \(\overline {\bf{x}} \), either y or \(\overline {\bf{y}} \), and either z or \(\overline {\bf{z}} \) that has the value 0 if and only if

a) \({\bf{x = }}\,{\bf{y = 1,}}\,{\bf{z = 0}}\)

b) \({\bf{x = }}\,{\bf{y = }}\,{\bf{z = 0}}\)

c) \({\bf{x = }}\,{\bf{z = 0,}}\,{\bf{y = 1}}\)

Exercises 14-23 deal with the Boolean algebra \(\left\{ {{\bf{0,1}}} \right\}\) with addition,multiplication, and complement defined at the beginning of this section. In each case, use a table as in Example \(8\).

22. Verify the unit property.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free