Chapter 12: Q12SE (page 844)
Show that \({\bf{x}} \odot {\bf{y = xy + \bar x\bar y}}\).
Short Answer
The given \({\bf{x}} \odot {\bf{y = xy + \bar x\bar y}}\) is proved.
Chapter 12: Q12SE (page 844)
Show that \({\bf{x}} \odot {\bf{y = xy + \bar x\bar y}}\).
The given \({\bf{x}} \odot {\bf{y = xy + \bar x\bar y}}\) is proved.
All the tools & learning materials you need for study success - in one app.
Get started for freeDraw the Hasse diagram for the poset consisting of the set of the \({\bf{16}}\)Boolean functions of degree two (shown in Table \({\bf{3}}\) of Section \({\bf{12}}{\bf{.1}}\)) with the partial ordering \( \le \).
Use the Quine–McCluskey method to simplify the sum-of-products expansions in Example \(4\).
Use a \({\bf{K}}\)-map to find a minimal expansion as a Boolean sum of Boolean products of each of these functions in the variables \({\bf{w, x, y}}\) and \({\bf{z}}\).
\(\begin{array}{l}{\bf{a) wxyz + wx\bar yz + wx\bar y\bar z + w\bar xy\bar z + w\bar x\bar yz}}\\{\bf{b) wxy\bar z + wx\bar yz + w\bar xyz + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{c) wxyz + wxy\bar z + wx\bar yz + w\bar x\bar yz + w\bar x\bar y\bar z + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{d) wxyz + wxy\bar z + wx\bar yz + w\bar xyz + w\bar xy\bar z + \bar wxyz + \bar w\bar xyz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\end{array}\)
Find a Boolean sum containing either x or \(\overline {\bf{x}} \), either y or \(\overline {\bf{y}} \), and either z or \(\overline {\bf{z}} \) that has the value 0 if and only if
a) \({\bf{x = }}\,{\bf{y = 1,}}\,{\bf{z = 0}}\)
b) \({\bf{x = }}\,{\bf{y = }}\,{\bf{z = 0}}\)
c) \({\bf{x = }}\,{\bf{z = 0,}}\,{\bf{y = 1}}\)
Exercises 14-23 deal with the Boolean algebra \(\left\{ {{\bf{0,1}}} \right\}\) with addition,multiplication, and complement defined at the beginning of this section. In each case, use a table as in Example \(8\).
22. Verify the unit property.
What do you think about this solution?
We value your feedback to improve our textbook solutions.