Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Express each of these Boolean functions using the operators · and −.

a) x + y + z

b) \({\bf{x + }}\overline {\bf{y}} \left( {\overline {\bf{x}} {\bf{ + z}}} \right)\)

c) \(\overline {{\bf{x + }}\overline {\bf{y}} } \)

d) \(\overline {\bf{x}} {\bf{(x + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} {\bf{)}}\)

Short Answer

Expert verified

The results are

(a) \(\overline {\left( {\overline x \overline y \overline z } \right)} \).

(b) \(\overline {\overline x \overline {\overline y \left( {\overline {x\overline z } } \right)} } \).

(c) \(\overline x y\).

(d) \(\overline x \left( {\overline {\overline x yz} } \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complements of elements \(\overline 0 = 1\) and \(\overline 1 = 0\).

The Boolean sum + or OR is 1 if either term is 1.

The Boolean product (.) or AND is 1 if both terms are 1.

Law of the double complement\(\overline{\overline {\bf{x}}} {\bf{ = x}}\)

De Morgan’s laws

\(\begin{aligned}\overline {{\bf{xy}}} & = \overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} \\\overline {{\bf{(x + y)}}} & = \overline {\bf{x}} \overline {\bf{y}} \end{aligned}\)

02

Find the solution of x + y + z.(a)

Here, it finds the value of \(x + y + z\).

\(\begin{aligned}x + y + z &= \overline{\overline x} + \overline{\overline y} + \overline{\overline z} \\ &= \overline {\left( {\overline x \overline y } \right)} + \overline{\overline z} \\ &= \overline {\left( {\overline x \overline y } \right)\overline z } \\ &= \overline {\left( {\overline x \overline y \overline z } \right)} \end{aligned}\)

03

Evaluate the result of \({\bf{x  +   }}\overline {\bf{y}} \left( {\overline {\bf{x}} {\bf{  +  z}}} \right)\).(b)

Now for the result of \(x{\bf{ }} + {\bf{ }}\overline y \left( {\overline x {\bf{ }} + {\bf{ }}z} \right)\).

\(\begin{aligned}x + \overline y \left( {\overline x + z} \right) &= \overline{\overline x} + \overline{\overline {\overline y \left( {\overline x + z} \right)}} \\ &= \overline {\overline x \overline {\overline y \left( {\overline x + z} \right)} } \\ &= \overline {\overline x \overline {\overline y \left( {\overline x + \overline z } \right)} } \\ &= \overline {\overline x \overline {\overline y \left( {\overline {x\overline z } } \right)} } \end{aligned}\)

04

Determine the result of \(\overline {{\bf{x + }}\overline {\bf{y}} } \).(c)

Now the result of \(\overline {x + \overline y } \).

\(\begin{aligned}\overline {x + \overline y } &= \overline {\overline{\overline x} + \overline y } \\ &= \overline{\overline {\overline x y}} \\ &= \overline x y\end{aligned}\)

05

Find the result for\(\overline {\bf{x}} {\bf{(x + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} {\bf{)}}\).(d)

Now the value of\(\overline x \left( {x + \overline y + \overline z } \right)\).

\(\begin{aligned}\overline x \left( {x + \overline y + \overline z } \right) &= \overline x \left( {\overline{\overline x} + \overline y + \overline z } \right)\\ &= \overline x \left( {\overline {\overline x y} + \overline z } \right)\\ &= \overline x \left( {\overline {\overline x yz} } \right)\end{aligned}\)

Therefore, these are the Boolean function.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free