Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For each of these equalities either prove it is an identity or find a set of values of the variables for which it does not hold.

\(\begin{array}{l}a)x|(y\mid z){\bf{ = }}(x\mid y)|z\\b)x \downarrow (y \downarrow z){\bf{ = }}(x \downarrow y) \downarrow (x \downarrow z)\\c)x \downarrow (y\mid z){\bf{ = }}(x \downarrow y)\mid (x \downarrow z)\end{array}\)

Define the Boolean operator \( \odot \) as follows: \(1 \odot 1{\bf{ = }}1,1 \odot 0{\bf{ = }}0,0 \odot 1{\bf{ = }}0\), and \(0 \odot 0{\bf{ = }}1\).

Short Answer

Expert verified

\((a)\)Identity does not hold for \((x,y,z){\bf{ = }}(0,0,1),(0,1,1),(1,0,0),(1,1,0)\).

\((b)\)Identity does not hold for \((x,y,z){\bf{ = }}(0,0,1),(0,1,0),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\).

\((c)\) Identity does not hold for \((x,y,z){\bf{ = }}(0,0,1),(0,1,0),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complement of an element: \(\bar 0{\bf{ = 1}}\) and \({\bf{\bar 1 = 0}}\).

The Boolean sum \({\bf{ + }}\) or \(OR\) is \(1\) if either term is \(1\).

The Boolean product \( \cdot \) or \(AND\) is \(1\) if both terms are \(1\).

The \(NOR\) operator \( \downarrow \) is \(1\) if both terms are \(0\).

The \(XOR\) operator \( \oplus \) is \(1\) if one of the terms is \(1\) (but not both).

The \(NAND\) operator \(\mid \) is \(1\) if either term is \(0\).

Domination laws

\(\begin{array}{c}{\bf{x + 1 = 1}}\\x \cdot 0{\bf{ = }}0\end{array}\)

02

Check whether the given hold identity or not

(a)

\(x|(y\mid z){\bf{ = }}(x\mid y)|z\)

Now create a table for all possible values of \(x,y\) and \(z\).

\(\begin{array}{*{20}{c}}x&y&z&{y\mid z}&{x\mid y}&{x\mid (y\mid z)}&{(x\mid y)\mid z}\\0&0&0&1&1&1&1\\0&0&1&1&1&1&0\\0&1&0&1&1&1&1\\0&1&1&0&1&1&0\\1&0&0&1&1&0&1\\1&0&1&1&1&0&0\\1&1&0&1&0&0&1\\1&1&1&0&0&1&1\end{array}\)

Then note that the last two columns of the table are not identical, thus the identity does not hold, for example, the last two columns differ in the second row which corresponds with the solution \((x,y,z){\bf{ = }}(0,0,1)\).

Therefore, the identities do not hold for \((x,y,z){\bf{ = }}(0,0,1),(0,1,1),(1,0,0),(1,1,0)\).

03

Check whether the given hold identity or not

(b)

\(x \downarrow (y \downarrow z){\bf{ = }}(x \downarrow y) \downarrow (x \downarrow z)\)

Now create a table for all possible values of \(x,y\) and \(z\).

\(\begin{array}{*{20}{c}}x&y&z&{y \downarrow z}&{x \downarrow y}&{x \downarrow z}&{x \downarrow (y \downarrow z)}&{(x \downarrow y) \downarrow (x \downarrow z)}\\0&0&0&1&1&1&0&0\\0&0&1&0&1&0&1&0\\0&1&0&0&0&1&1&0\\0&1&1&0&0&0&1&1\\1&0&0&1&0&0&0&1\\1&0&1&0&0&0&0&1\\1&1&0&0&0&0&0&1\\1&1&1&0&0&0&0&1\end{array}\)

Then note that the last two columns of the table are not identical, thus the identity does not hold, for example, the last two columns differ in the second row which corresponds with the solution \((x,y,z){\bf{ = }}(0,0,1)\).

Therefore, the identities do not hold for

\((x,y,z){\bf{ = }}(0,0,1),(0,1,0),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\).

04

Check whether the given hold identity or not

(c)

\(x \downarrow (y\mid z){\bf{ = }}(x \downarrow y)\mid (x \downarrow z)\)

Now create a table for all possible values of \(x,y\) and \(z\).

\(\begin{array}{*{20}{c}}x&y&z&{y\mid z}&{x \downarrow y}&{x \downarrow z}&{x \downarrow (y\mid z)}&{(x \downarrow y)\mid (x \downarrow z)}\\0&0&0&1&1&1&0&0\\0&0&1&1&1&0&0&1\\0&1&0&1&0&1&0&1\\0&1&1&0&0&0&1&1\\1&0&0&1&0&0&0&1\\1&0&1&1&0&0&0&1\\1&1&0&1&0&0&0&1\\1&1&1&0&0&0&0&1\end{array}\)

Then note that the last two columns of the table are not identical, thus the identity does not hold, for example, the last two columns differ in the second row which corresponds with the solution \((x,y,z){\bf{ = }}(0,0,1)\).

Therefore, the identities do not hold for

\((x,y,z){\bf{ = }}(0,0,1),(0,1,0),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free