Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For each of these equalities either prove it is an identity or find a set of values of the variables for which it does not hold.

\(\begin{array}{l}a)x|(y\mid z){\bf{ = }}(x\mid y)|z\\b)x \downarrow (y \downarrow z){\bf{ = }}(x \downarrow y) \downarrow (x \downarrow z)\\c)x \downarrow (y\mid z){\bf{ = }}(x \downarrow y)\mid (x \downarrow z)\end{array}\)

Define the Boolean operator \( \odot \) as follows: \(1 \odot 1{\bf{ = }}1,1 \odot 0{\bf{ = }}0,0 \odot 1{\bf{ = }}0\), and \(0 \odot 0{\bf{ = }}1\).

Short Answer

Expert verified

\((a)\)Identity does not hold for \((x,y,z){\bf{ = }}(0,0,1),(0,1,1),(1,0,0),(1,1,0)\).

\((b)\)Identity does not hold for \((x,y,z){\bf{ = }}(0,0,1),(0,1,0),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\).

\((c)\) Identity does not hold for \((x,y,z){\bf{ = }}(0,0,1),(0,1,0),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\).

Step by step solution

01

Definition

The complement of an element: \(\bar 0{\bf{ = 1}}\) and \({\bf{\bar 1 = 0}}\).

The Boolean sum \({\bf{ + }}\) or \(OR\) is \(1\) if either term is \(1\).

The Boolean product \( \cdot \) or \(AND\) is \(1\) if both terms are \(1\).

The \(NOR\) operator \( \downarrow \) is \(1\) if both terms are \(0\).

The \(XOR\) operator \( \oplus \) is \(1\) if one of the terms is \(1\) (but not both).

The \(NAND\) operator \(\mid \) is \(1\) if either term is \(0\).

Domination laws

\(\begin{array}{c}{\bf{x + 1 = 1}}\\x \cdot 0{\bf{ = }}0\end{array}\)

02

Check whether the given hold identity or not

(a)

\(x|(y\mid z){\bf{ = }}(x\mid y)|z\)

Now create a table for all possible values of \(x,y\) and \(z\).

\(\begin{array}{*{20}{c}}x&y&z&{y\mid z}&{x\mid y}&{x\mid (y\mid z)}&{(x\mid y)\mid z}\\0&0&0&1&1&1&1\\0&0&1&1&1&1&0\\0&1&0&1&1&1&1\\0&1&1&0&1&1&0\\1&0&0&1&1&0&1\\1&0&1&1&1&0&0\\1&1&0&1&0&0&1\\1&1&1&0&0&1&1\end{array}\)

Then note that the last two columns of the table are not identical, thus the identity does not hold, for example, the last two columns differ in the second row which corresponds with the solution \((x,y,z){\bf{ = }}(0,0,1)\).

Therefore, the identities do not hold for \((x,y,z){\bf{ = }}(0,0,1),(0,1,1),(1,0,0),(1,1,0)\).

03

Check whether the given hold identity or not

(b)

\(x \downarrow (y \downarrow z){\bf{ = }}(x \downarrow y) \downarrow (x \downarrow z)\)

Now create a table for all possible values of \(x,y\) and \(z\).

\(\begin{array}{*{20}{c}}x&y&z&{y \downarrow z}&{x \downarrow y}&{x \downarrow z}&{x \downarrow (y \downarrow z)}&{(x \downarrow y) \downarrow (x \downarrow z)}\\0&0&0&1&1&1&0&0\\0&0&1&0&1&0&1&0\\0&1&0&0&0&1&1&0\\0&1&1&0&0&0&1&1\\1&0&0&1&0&0&0&1\\1&0&1&0&0&0&0&1\\1&1&0&0&0&0&0&1\\1&1&1&0&0&0&0&1\end{array}\)

Then note that the last two columns of the table are not identical, thus the identity does not hold, for example, the last two columns differ in the second row which corresponds with the solution \((x,y,z){\bf{ = }}(0,0,1)\).

Therefore, the identities do not hold for

\((x,y,z){\bf{ = }}(0,0,1),(0,1,0),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\).

04

Check whether the given hold identity or not

(c)

\(x \downarrow (y\mid z){\bf{ = }}(x \downarrow y)\mid (x \downarrow z)\)

Now create a table for all possible values of \(x,y\) and \(z\).

\(\begin{array}{*{20}{c}}x&y&z&{y\mid z}&{x \downarrow y}&{x \downarrow z}&{x \downarrow (y\mid z)}&{(x \downarrow y)\mid (x \downarrow z)}\\0&0&0&1&1&1&0&0\\0&0&1&1&1&0&0&1\\0&1&0&1&0&1&0&1\\0&1&1&0&0&0&1&1\\1&0&0&1&0&0&0&1\\1&0&1&1&0&0&0&1\\1&1&0&1&0&0&0&1\\1&1&1&0&0&0&0&1\end{array}\)

Then note that the last two columns of the table are not identical, thus the identity does not hold, for example, the last two columns differ in the second row which corresponds with the solution \((x,y,z){\bf{ = }}(0,0,1)\).

Therefore, the identities do not hold for

\((x,y,z){\bf{ = }}(0,0,1),(0,1,0),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Which of these functions are self-dual?

\(\begin{array}{l}\left. {\bf{a}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = x\\\left. {\bf{b}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{xy + \bar x\bar y}}\\\left. {\bf{c}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{x + y}}\\\left. {\bf{d}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{xy + \bar xy}}\end{array}\)

Use a table to express the values of each of these Boolean functions.

\(\begin{array}{l}(a)F(x,y,z) = \bar xy\\(b)F(x,y,z) = x + yz\\(c)F(x,y,z) = x\bar y + \overline {(xyz)} \\(d)F(x,y,z) = x(yz + \bar y\bar z)\end{array}\)

Deal with the Boolean algebra \(\{ 0,1\} \) with addition, multiplication, and complement defined at the beginning of this section. In each case, use a table as in Example \(8\).

Verify the zero property.

The Boolean operator \( \oplus \), called the \(XOR\) operator, is defined by \(1 \oplus 1{\bf{ = }}0,1 \oplus 0{\bf{ = }}1,0 \oplus 1{\bf{ = }}1\), and \(0 \oplus 0{\bf{ = }}0\).

Design a circuit for a light fixture controlled by four switches, where flipping one of the switches turns the light on when it is off and turns it off when it is on.

Let \({\bf{x}}\) and \({\bf{y}}\) belong to \(\left\{ {{\bf{0,1}}} \right\}\). Does it necessarily follow that \({\bf{x = y}}\) if there exists a value \({\bf{z}}\) in \(\left\{ {{\bf{0,1}}} \right\}\) such that,

\(\begin{array}{l}{\bf{a) xz = yz?}}\\{\bf{b) x + z = y + z?}}\\{\bf{c) x}} \oplus {\bf{z = y}} \oplus {\bf{z?}}\\{\bf{d) x}} \downarrow {\bf{z = y}} \downarrow {\bf{z?}}\\{\bf{e) x}}|{\bf{z = y}}|z{\bf{?}}\end{array}\)

A Boolean function \({\bf{F}}\) is called self-dual if and only if \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = }}\overline {{\bf{F}}\left( {{{{\bf{\bar x}}}_{\bf{1}}}{\bf{, \ldots ,}}{{{\bf{\bar x}}}_{\bf{n}}}} \right)} \).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free