Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the product-of-sums expansion of each of the Boolean functions in Exercise 3.

Short Answer

Expert verified

The products of sums expansion of Boolean functions are

(a) The product of sums expansion is \({\bf{F(x,y,z) = x + y + z}}\).

(b) The product of sums expansion is \({\bf{F(x,y,z) = }}\left( {{\bf{x + y + z}}} \right)\left( {{\bf{x + y + }}\overline {\bf{z}} } \right)\left( {{\bf{x + }}\overline {\bf{y}} {\bf{ + z}}} \right)\left( {\overline {\bf{x}} {\bf{ + y + z}}} \right)\left( {\overline {\bf{x}} {\bf{ + y + }}\overline {\bf{z}} } \right)\).

(c) The product of sums expansion is \({\bf{F(x,y,z) = }}\left( {{\bf{x + y + z}}} \right)\left( {{\bf{x + y + }}\overline {\bf{z}} } \right)\left( {{\bf{x + }}\overline {\bf{y}} {\bf{ + z}}} \right)\left( {{\bf{x + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} } \right)\).

(d) The product of sums expansion is \({\bf{F(x,y,z) = }}\left( {{\bf{x + y + z}}} \right)\left( {{\bf{x + y + }}\overline {\bf{z}} } \right)\left( {{\bf{x + }}\overline {\bf{y}} {\bf{ + z}}} \right)\left( {{\bf{x + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} } \right)\left( {\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} {\bf{ + z}}} \right)\left( {\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} } \right)\).

Step by step solution

01

Definition

The complements of an elements\(\overline {\bf{0}} {\bf{ = 1}}\)and\(\overline {\bf{1}} {\bf{ = 0}}\).

The Boolean sum + or OR is 1 if either term is 1.

The Boolean product (.) or AND is 1 if both terms are 1.

02

Find the product of sums expansion of part (a).(a)

Here, \({\bf{F(x,y,z) = x + y + z}}\)

This is already in the product of some form. Thus, the product of sums expansion of \({\bf{x + y + z}}\) is \({\bf{x + }}\,\,{\bf{y}}\,\,{\bf{ + z}}\).

03

Determine the product of sums expansion of part (b). (b)

Here, \({\bf{F(x,y,z) = }}\left( {{\bf{x + z}}} \right){\bf{y}}\)

First find the value of F.

X

Y

Z

\(\left( {{\bf{x + z}}} \right)\)

\(\left( {{\bf{x + z}}} \right){\bf{y}}\)

Boolean sum

0

0

0

0

0

\({\bf{x + y + z}}\)

0

0

1

1

0

\({\bf{x + y + }}\overline {\bf{z}} \)

0

1

0

0

0

\({\bf{x + }}\overline {\bf{y}} {\bf{ + z}}\)

0

1

1

1

1

\({\bf{x + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} \)

1

0

0

1

0

\(\overline {\bf{x}} {\bf{ + y + z}}\)

1

0

1

1

0

\(\overline {\bf{x}} {\bf{ + y + }}\overline {\bf{z}} \)

1

1

0

1

1

\(\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} {\bf{ + z}}\)

1

1

1

1

1

\(\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} \)

The product of sums expansion F then contains a factor for every row that has a 0 in the column. A factor in the sum of the three variables.

\({\bf{F(x,y,z) = }}\left( {{\bf{x + y + z}}} \right)\left( {{\bf{x + y + }}\overline {\bf{z}} } \right)\left( {{\bf{x + }}\overline {\bf{y}} {\bf{ + z}}} \right)\left( {\overline {\bf{x}} {\bf{ + y + z}}} \right)\left( {\overline {\bf{x}} {\bf{ + y + }}\overline {\bf{z}} } \right)\).

04

Evaluate the product of sums expansion of part (c). (c)

Here, \({\bf{F(x,y,z) = x}}\).

First find the value of F.

X

Y

Z

\({\bf{F(x,y,z) = x}}\)

Boolean sum

0

0

0

0

\({\bf{x + y + z}}\)

0

0

1

0

\({\bf{x + y + }}\overline {\bf{z}} \)

0

1

0

0

\({\bf{x + }}\overline {\bf{y}} {\bf{ + z}}\)

0

1

1

0

\({\bf{x + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} \)

1

0

0

1

\(\overline {\bf{x}} {\bf{ + y + z}}\)

1

0

1

1

\(\overline {\bf{x}} {\bf{ + y + }}\overline {\bf{z}} \)

1

1

0

1

\(\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} {\bf{ + z}}\)

1

1

1

1

\(\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} \)

The product of sums expansion F then contains a factor for every row that has a 0 in the column. A factor in the sum of the three variables.

\({\bf{F(x,y,z) = }}\left( {{\bf{x + y + z}}} \right)\left( {{\bf{x + y + }}\overline {\bf{z}} } \right)\left( {{\bf{x + }}\overline {\bf{y}} {\bf{ + z}}} \right)\left( {{\bf{x + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} } \right)\).

05

Evaluate the product of sums expansion for part (d).(d)

Here, \({\bf{F(x,y,z) = x}}\overline {\bf{y}} \)

First find the value of F.

X

Y

Z

\(\overline {\bf{y}} \)

\({\bf{F(x,y,z) = x}}\)

Boolean sum

0

0

0

1

0

\({\bf{x + y + z}}\)

0

0

1

1

0

\({\bf{x + y + }}\overline {\bf{z}} \)

0

1

0

0

0

\({\bf{x + }}\overline {\bf{y}} {\bf{ + z}}\)

0

1

1

0

0

\({\bf{x + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} \)

1

0

0

1

1

\(\overline {\bf{x}} {\bf{ + y + z}}\)

1

0

1

1

1

\(\overline {\bf{x}} {\bf{ + y + }}\overline {\bf{z}} \)

1

1

0

0

0

\(\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} {\bf{ + z}}\)

1

1

1

0

0

\(\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} \)

The product of sums expansion F then contains a factor for every row that has a 0 in the column. A factor in the sum of the three variables.

Therefore, the sum of products expansions is \({\bf{F(x,y,z) = }}\left( {{\bf{x + y + z}}} \right)\left( {{\bf{x + y + }}\overline {\bf{z}} } \right)\left( {{\bf{x + }}\overline {\bf{y}} {\bf{ + z}}} \right)\left( {{\bf{x + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} } \right)\left( {\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} {\bf{ + z}}} \right)\left( {\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} {\bf{ + }}\overline {\bf{z}} } \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({\bf{x}}\) and \({\bf{y}}\) belong to \(\left\{ {{\bf{0,1}}} \right\}\). Does it necessarily follow that \({\bf{x = y}}\) if there exists a value \({\bf{z}}\) in \(\left\{ {{\bf{0,1}}} \right\}\) such that,

\(\begin{array}{l}{\bf{a) xz = yz?}}\\{\bf{b) x + z = y + z?}}\\{\bf{c) x}} \oplus {\bf{z = y}} \oplus {\bf{z?}}\\{\bf{d) x}} \downarrow {\bf{z = y}} \downarrow {\bf{z?}}\\{\bf{e) x}}|{\bf{z = y}}|z{\bf{?}}\end{array}\)

A Boolean function \({\bf{F}}\) is called self-dual if and only if \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = }}\overline {{\bf{F}}\left( {{{{\bf{\bar x}}}_{\bf{1}}}{\bf{, \ldots ,}}{{{\bf{\bar x}}}_{\bf{n}}}} \right)} \).

Find the duals of these Boolean expressions.

\(\begin{array}{l}{\bf{a) x + y}}\\{\bf{b) \bar x\bar y}}\\{\bf{c) xyz + \bar x\bar y\bar z}}\\{\bf{d) x\bar z + x \times 0 + \bar x \times 1}}\end{array}\)

Explain how to construct the sum-of-products expansion of a Boolean function.

Show that if \({\bf{F}}\) and \({\bf{G}}\) are Boolean functions represented by Boolean expressions in \({\bf{n}}\) variables and \({\bf{F = G}}\), then \({{\bf{F}}^{\bf{d}}}{\bf{ = }}{{\bf{G}}^{\bf{d}}}\), where \({{\bf{F}}^{\bf{d}}}\) and \({{\bf{G}}^{\bf{d}}}\) are the Boolean functions represented by the duals of the Boolean expressions representing \({\bf{F}}\) and \({\bf{G}}\), respectively. (Hint: Use the result of Exercise \(29\).)

Construct a half adder using NOR gates.A multiplexer is a switching circuit that produces as output one of a set of input bits based on the value of control bits.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free