Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Draw the Hasse diagram for the poset consisting of the set of the \({\bf{16}}\)Boolean functions of degree two (shown in Table \({\bf{3}}\) of Section \({\bf{12}}{\bf{.1}}\)) with the partial ordering \( \le \).

Short Answer

Expert verified

It needs to connect two functions \({{\bf{F}}_{\bf{i}}}\) and \({{\bf{F}}_{\bf{j}}}\) by an edge, if the two functions differ in exactly one value.

Step by step solution

01

Definition

The complement of an element: \({\bf{\bar 0 = 1}}\) and \({\bf{\bar 1 = 0}}\).

The Boolean sum \({\bf{ + }}\) or \({\bf{OR}}\) is \({\bf{1}}\) if either term is \({\bf{1}}\).

The Boolean product or \({\bf{AND}}\) is \({\bf{1}}\) if both terms are \({\bf{1}}\).

\({\bf{F}} \le {\bf{G}}\) if \({\bf{G}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 1}}\) whenever \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 1}}\).

02

Table of values

The \({\bf{1}}6\) Boolean Functions of degree \({\bf{2}}\) (given in the table mentioned in the exercise prompt)

\(\begin{array}{*{20}{r}}{\bf{x}}&{{\bf{ y}}}&{{\bf{ }}{{\bf{F}}_{\bf{1}}}}&{{\bf{ }}{{\bf{F}}_{\bf{2}}}}&{{\bf{ }}{{\bf{F}}_{\bf{3}}}}&{{\bf{ }}{{\bf{F}}_{\bf{4}}}}&{{\bf{ }}{{\bf{F}}_{\bf{5}}}}&{{\bf{ }}{{\bf{F}}_{\bf{6}}}}&{{\bf{ }}{{\bf{F}}_{\bf{7}}}}&{{\bf{ }}{{\bf{F}}_{\bf{8}}}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}\end{array}\)

Further, continue the above table,

\(\begin{array}{*{20}{r}}{\bf{x}}&{{\bf{ y}}}&{{\bf{ }}{{\bf{F}}_{\bf{9}}}}&{{\bf{ }}{{\bf{F}}_{{\bf{10}}}}}&{{\bf{ }}{{\bf{F}}_{{\bf{11}}}}}&{{\bf{ }}{{\bf{F}}_{{\bf{12}}}}}&{{\bf{ }}{{\bf{F}}_{{\bf{13}}}}}&{{\bf{ }}{{\bf{F}}_{{\bf{14}}}}}&{{\bf{ }}{{\bf{F}}_{{\bf{15}}}}}&{{\bf{ }}{{\bf{F}}_{{\bf{16}}}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}\end{array}\)

03

Hasse diagram

Here \({{\bf{F}}_{\bf{1}}}\) is the smallest function (based on the definition of \({\bf{F}} \le {\bf{G}}\) ), because \({{\bf{F}}_{\bf{1}}}\) contains a \({\bf{1}}\) for all possible values.

Next should be the functions \({{\bf{F}}_{\bf{2}}}{\bf{,}}{{\bf{F}}_{\bf{3}}}{\bf{,}}{{\bf{F}}_{\bf{5}}}{\bf{,}}{{\bf{F}}_{\bf{9}}}\) as these functions contain \({\bf{3}}\) ones for the \({\bf{4}}\) possible values, since \({{\bf{F}}_{\bf{1}}} \le {{\bf{F}}_{\bf{2}}}{\bf{, }}{{\bf{F}}_{\bf{1}}} \le {{\bf{F}}_{\bf{3}}}{\bf{,}}{{\bf{F}}_{\bf{1}}} \le {{\bf{F}}_{\bf{5}}}{\bf{,}}{{\bf{F}}_{\bf{1}}} \le {{\bf{F}}_{\bf{9}}}\) (and all other functions are larger than at least one of the functions \({{\bf{F}}_{\bf{2}}}{\bf{,}}{{\bf{F}}_{\bf{3}}}{\bf{,}}{{\bf{F}}_{\bf{5}}}{\bf{,}}{{\bf{F}}_{\bf{9}}}\) ).

Hence, it needs to connect two functions \({{\bf{F}}_{\bf{i}}}\) and \({{\bf{F}}_{\bf{j}}}\) by an edge, if the two functions differ in exactly one value.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free