Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the first five terms of the sequence defined by each of these recurrence relations and initial conditions.

  1. \({a_n} = 6{a_{n - 1}},{a_0} = 2\)
  2. \({a_n} = {a^2}_{n - 1},{a_1} = 2\)
  3. \({a_n} = {a_{n - 1}} + 3{a_{n - 2}},{a_0} = 1,{a_1} = 2\)
  4. \({a_n} = n{a_{n - 1}} + {n^2}{a_{n - 2}},{a_0} = 1,{a_1} = 1\)
  5. \({a_n} = {a_{n - 1}} + {a_{n - 3}},{a_0} = 1,{a_1} = 2,{a_2} = 0\)

Short Answer

Expert verified

Hence, the first five terms of the given sequences are as follows:

\(\begin{array}{l}a){\rm{ }}{a_n} = 6{a_{n - 1}}{\rm{ terms are: }}2{\rm{,12,72,432,2592}}\\b){\rm{ }}{a_n} = {a^2}_{n - 1},{\rm{ terms are: 2,4,16,256,65536}}\\c){\rm{ }}{a_n} = {a_{n - 1}} + 3{a_{n - 2}},{\rm{ terms are: }}1,2,5,11,26\\d){\rm{ }}{a_n} = n{a_{n - 1}} + {n^2}{a_{n - 2}},{\rm{ terms are: }}1,1,6,27,204\\e){\rm{ }}{a_n} = {a_{n - 1}} + {a_{n - 3}},{\rm{ terms are: }}1,2,0,2,1,3\end{array}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

(a)Step 1: Solve for different values of n in the sequence \({a_n} = 6{a_{n - 1}}\)

We are given the sequence \({a_n} = 6{a_{n - 1}},{a_0} = 2\).

The first five terms are:

\(\begin{array}{c}{a_1} = 6{a_{1 - 1}}\\ = 6{a_0}\\ = 6 \cdot 2\\ = 12\end{array}\)

\(\begin{array}{c}{a_2} = 6{a_{2 - 1}}\\ = 6{a_1}\\ = 6 \cdot 12\\ = 72\end{array}\)

\(\begin{array}{c}{a_3} = 6{a_{3 - 1}}\\ = 6{a_2}\\ = 6 \cdot 72\\ = 432\end{array}\)

\(\begin{array}{c}{a_4} = 6{a_{4 - 1}}\\ = 6{a_3}\\ = 6 \cdot 432\\ = 2592\end{array}\)

Hence, the first five terms in the given sequence is 2, 12, 72, 432, 2592.

02

(b)Step 2: Solve for different values of n in the sequence \({a_n} = {a^2}_{n - 1}\)

We are given the sequence \({a_n} = {a^2}_{n - 1},{a_1} = 2\)

The first five terms are:

\(\begin{array}{c}{a_2} = {a^2}_{2 - 1}\\ = {a^2}_1\\ = {(2)^2}\\ = 4\end{array}\)

\(\begin{array}{c}{a_3} = {a^2}_{3 - 1}\\ = {a^2}_2\\ = {(4)^2}\\ = 16\end{array}\)

\(\begin{array}{c}{a_4} = {a^2}_{4 - 1}\\ = {a^2}_3\\ = {(16)^2}\\ = 256\end{array}\)

\(\begin{array}{c}{a_5} = {a^2}_{5 - 1}\\ = {a^2}_4\\ = {(256)^2}\\ = 65536\end{array}\)

Hence, the first five terms in the given sequence is 2, 4, 64, 256, 65536.

03

(c)Step 3: Solve for different values of n in the sequence \({a_n} = {a_{n - 1}} + 3{a_{n - 2}}\)

We are given the sequence\({a_n} = {a_{n - 1}} + 3{a_{n - 2}},{a_0} = 1,{a_1} = 2\)

The first five terms are:

\(\begin{array}{c}{a_2} = {a_{2 - 1}} + 3{a_{2 - 2}}\\ = {a_1} + 3{a_0}\\ = 2 + 3(1)\\ = 5\end{array}\)

\(\begin{array}{c}{a_3} = {a_{3 - 1}} + 3{a_{3 - 2}}\\ = {a_2} + 3{a_1}\\ = 5 + 3(2)\\ = 11\end{array}\)

\(\begin{array}{c}\\{a_4} = {a_{4 - 1}} + 3{a_{4 - 2}}\\ = {a_3} + 3{a_2}\\ = 11 + 3(5)\\ = 26\end{array}\)

Hence, the first five terms in the given sequence is 1, 2, 5, 11, 26.

04

(d)Step 4: Solve for different values of n in the sequence \({a_n} = n{a_{n - 1}} + {n^2}{a_{n - 2}}\)

We are given the sequence\({a_n} = n{a_{n - 1}} + {n^2}{a_{n - 2}},{a_0} = 1,{a_1} = 1\).

The first five terms are:

\(\begin{array}{c}{a_2} = 2{a_{2 - 1}} + {(2)^2}{a_{2 - 2}}\\ = 2{a_1} + 4{a_0}\\ = 2(1) + 4(1)\\ = 6\end{array}\)

\(\begin{array}{c}{a_3} = 3{a_{3 - 1}} + {(3)^2}{a_{3 - 2}}\\ = 3{a_2} + 9{a_1}\\ = 3(6) + 9(1)\\ = 27\end{array}\)

\(\begin{array}{c}{a_4} = 4{a_{4 - 1}} + {(4)^2}{a_{4 - 2}}\\ = 4{a_3} + 16{a_2}\\ = 4(27) + 16(6)\\ = 204\end{array}\)

Hence, the first five terms in the given sequence is 1,1, 6, 27, 204.

05

(e)Step 5: Solve for different values of n in the sequence \({a_n} = {a_{n - 1}} + {a_{n - 3}}\)

We are given the sequence\({a_n} = {a_{n - 1}} + {a_{n - 3}},{a_0} = 1,{a_1} = 2,{a_2} = 0\).

The first five terms are:

\(\begin{array}{c}{a_3} = {a_{3 - 1}} + {a_{3 - 3}}\\ = {a_2} + {a_0}\\ = 0 + 1\\ = 1\end{array}\)

\(\begin{array}{c}{a_4} = {a_{4 - 1}} + {a_{4 - 3}}\\ = {a_3} + {a_1}\\ = 1 + 2\\ = 3\end{array}\)

Hence, the first five terms in the given sequence is 1, 2, 0, 1, 3.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free