Chapter 2: Q58Y (page 115)
Show that each of these proposed recursive definitions of a function on the set of positive integer, does not produce a well-defined function.
a)\({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {\left\lfloor {{\bf{n/2}}} \right\rfloor } \right)\;{\bf{for}}\;{\bf{n}} \ge {\bf{1}}\;{\bf{and}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 1}}{\bf{.}}\)
b)\({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n - 3}}} \right)\;{\bf{for}}\;{\bf{n}} \ge {\bf{2,}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 2,}}\;{\bf{and}}\;{\bf{F}}\left( {\bf{2}} \right){\bf{ = 3}}{\bf{.}}\)
c)\({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n/2}}} \right)\;{\bf{for}}\;{\bf{n}} \ge {\bf{2,}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 1,}}\;{\bf{and}}\;{\bf{F}}\left( {\bf{2}} \right){\bf{ = 2}}{\bf{.}}\)
d)\({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n/2}}} \right)\;{\bf{if}}\;{\bf{n}}\;{\bf{is}}\;{\bf{even}}\;{\bf{and}}\;{\bf{n}} \ge {\bf{2,}}\;{\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 - F}}\left( {{\bf{n - 1}}} \right)\;{\bf{if}}\;{\bf{n}}\;{\bf{is}}\;{\bf{odd,}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 1}}{\bf{.}}\)
e) \(\begin{array}{l}{\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n/2}}} \right)\;{\bf{if}}\;{\bf{n}}\;{\bf{is}}\;{\bf{even}}\;{\bf{and}}\;{\bf{n}} \ge {\bf{2,}}\;\\{\bf{F}}\left( {\bf{n}} \right){\bf{ = F}}\left( {{\bf{3n - 1}}} \right)\;{\bf{if}}\;{\bf{n}}\;{\bf{is}}\;{\bf{odd}}\;{\bf{and}}\;{\bf{n}} \ge {\bf{3,}}\;{\bf{and}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 1}}{\bf{.}}\end{array}\)
Short Answer
(a). It does not produce a well-defined function.
(b). It is does not produce a well-defined function.
(c). It is does not produce a well-defined function.
(d). It does not produce a well-defined function.
(e). It does not produce a well-defined function.