Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that each of these proposed recursive definitions of a function on the set of positive integer, does not produce a well-defined function.

a)\({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {\left\lfloor {{\bf{n/2}}} \right\rfloor } \right)\;{\bf{for}}\;{\bf{n}} \ge {\bf{1}}\;{\bf{and}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 1}}{\bf{.}}\)

b)\({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n - 3}}} \right)\;{\bf{for}}\;{\bf{n}} \ge {\bf{2,}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 2,}}\;{\bf{and}}\;{\bf{F}}\left( {\bf{2}} \right){\bf{ = 3}}{\bf{.}}\)

c)\({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n/2}}} \right)\;{\bf{for}}\;{\bf{n}} \ge {\bf{2,}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 1,}}\;{\bf{and}}\;{\bf{F}}\left( {\bf{2}} \right){\bf{ = 2}}{\bf{.}}\)

d)\({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n/2}}} \right)\;{\bf{if}}\;{\bf{n}}\;{\bf{is}}\;{\bf{even}}\;{\bf{and}}\;{\bf{n}} \ge {\bf{2,}}\;{\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 - F}}\left( {{\bf{n - 1}}} \right)\;{\bf{if}}\;{\bf{n}}\;{\bf{is}}\;{\bf{odd,}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 1}}{\bf{.}}\)

e) \(\begin{array}{l}{\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n/2}}} \right)\;{\bf{if}}\;{\bf{n}}\;{\bf{is}}\;{\bf{even}}\;{\bf{and}}\;{\bf{n}} \ge {\bf{2,}}\;\\{\bf{F}}\left( {\bf{n}} \right){\bf{ = F}}\left( {{\bf{3n - 1}}} \right)\;{\bf{if}}\;{\bf{n}}\;{\bf{is}}\;{\bf{odd}}\;{\bf{and}}\;{\bf{n}} \ge {\bf{3,}}\;{\bf{and}}\;{\bf{F}}\left( {\bf{1}} \right){\bf{ = 1}}{\bf{.}}\end{array}\)

Short Answer

Expert verified

(a). It does not produce a well-defined function.

(b). It is does not produce a well-defined function.

(c). It is does not produce a well-defined function.

(d). It does not produce a well-defined function.

(e). It does not produce a well-defined function.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Introduction

A recursive function is a function that its value at any point can be calculated from the values of the function at some previous points.

02

Solution

We shall show that recursive definition of a function does not produce a well define function.

We have the following proposed recursive definition of a function on the set of positive integers.

03

(a) Find \(F\left( n \right) = 1 + F\left( {\left\lfloor {n/2} \right\rfloor } \right)\)

Let us consider the following function

\(F\left( n \right) = 1 + F\left( {\left\lfloor {\frac{n}{2}} \right\rfloor } \right)\;\;{\rm{for n}} \ge 1\;{\rm{and F}}\left( 1 \right) = 1\)

For \(n = 1\)

\(\begin{array}{l}F\left( 1 \right) = 1 + F\left( {\left\lfloor {\frac{1}{2}} \right\rfloor } \right)\\F\left( 1 \right) = 1 + F\left( {\left\lfloor {0.5} \right\rfloor } \right)\\F\left( n \right) = 1 + F\left( 0 \right)\end{array}\)

But\(F\left( 0 \right)\)is undefined

Thus, it does not produce a well-defined function

04

(b) Find \({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n - 3}}} \right)\)

Let is consider the following function

\(\begin{array}{l}F\left( n \right) = 1 + F\left( {n - 3} \right)\;\;{\rm{for n}} \ge 2\;F\left( 1 \right) = 2\;{\rm{and F}}\left( 2 \right) = 3\\{\rm{For n = 2 }}\end{array}\)

\(\begin{array}{c}F\left( 2 \right) &= 1 + F\left( {2 - 3} \right)\\ &= 1 + F\left( { - 1} \right)\end{array}\)

Now\(F\left( 2 \right)\)makes no sense

For\(n = 3\)

\(\begin{array}{c}F\left( 3 \right) &= 1 + F\left( {3 - 3} \right)\\ &= 1 - F\left( 0 \right)\end{array}\)

But\(F\left( 0 \right)\)is undefined

Thus, it is does not produce a well-defined function

05

(c) Find \({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n/2}}} \right)\;\)

Let us consider the following function.

\(F\left( n \right) = 1 + F\left( {\frac{n}{2}} \right)\;\;{\rm{for n}} \ge 2\;F\left( 1 \right) = 1\;{\rm{and F}}\left( 2 \right) = 2\)

For\(n = 3\)

\(F\left( 3 \right) = 1 + F\left( {\frac{3}{2}} \right)\)

But\(F\left( {\frac{3}{2}} \right)\)is undefined

Thus, it is does not produce a well-defined function.

06

(d) Find \({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n/2}}} \right)\)

Let us consider the following function

\(\begin{array}{l}F\left( n \right) = 1 + F\left( {\frac{n}{2}} \right)\;{\rm{if }}n\;{\rm{is }}{\rm{even and }}n \ge 2\;\\F\left( n \right) = 1 - F\left( {n - 1} \right)\;{\rm{if }}n\;{\rm{is}}\;{\rm{odd}}\;{\rm{and}}\;n \ge 3\\F\left( 1 \right) = 1\end{array}\)

For\(n = 2\)and using function of even number

\(\begin{array}{l}F\left( 2 \right) = 1 + F\left( {\frac{2}{3}} \right)\\\;\;\;\;\;\;\; = 1 + F\left( 1 \right)\\\;\;\;\;\;\;\; = 1 + F\left( 1 \right)\\\;\;\;\;\;\;\; = 2\end{array}\)

To evaluate an even integer, we use\(n = 1\),which is an odd number.

To produce a well-defined function, we should use \(n = 1\) for odd numbers only thus, it does not produce a well-defined function

07

(e) Find \({\bf{F}}\left( {\bf{n}} \right){\bf{ = 1 + F}}\left( {{\bf{n/2}}} \right)\)

Let us consider the following function

\(\begin{array}{l}F\left( n \right) = 1 + F\left( {\frac{n}{2}} \right)\;{\rm{if }}n\;{\rm{is }}{\rm{even and }}n \ge 2\;\\F\left( n \right) = F\left( {3n - 1} \right)\;{\rm{if }}n\;{\rm{is}}\;{\rm{odd}}\;{\rm{and}}\;n \ge 3\\F\left( 1 \right) = 1\end{array}\)

For\(n = 2\)

\(\begin{array}{l}F\left( 2 \right) = 1 + F\left( {\frac{2}{2}} \right)\\\;\;\;\;\;\;\; = 1 + F\left( 1 \right)\end{array}\)

For\(n = 3\)

\(\begin{array}{l}F\left( 3 \right) = F\left( {9 - 1} \right)\\\;\;\;\;\;\;\; = F\left( 8 \right)\\\;\;\;\;\;\;\; = 1 + F\left( {\frac{8}{2}} \right)\\\;\;\;\;\;\;\; = 1 + F\left( 4 \right)\end{array}\)

For\(n = 5\)

\(\begin{array}{c}F\left( 2 \right) = F\left( {3 \times 5 - 1} \right)\\\;\;\;\;\;\;\; = F\left( {15 - 1} \right)\\\;\;\;\;\;\;\; = F\left( {14} \right)\\ = 1 + F\left( {\frac{{14}}{2}} \right)\\ = 1 + F\left( 7 \right)\\ = 1 + F\left( {21 - 1} \right)\\ = 1 + F\left( {20} \right)\\\;\;\;\;\;\;\;\;\;\; = 1 + 1 + F\left( {\frac{{20}}{2}} \right)\\\;\;\;\;\;\;\;\;\;\;\; = 1 + 1 + F\left( {10} \right)\\\;\;\;\;\;\;\;\;\;\;\; = 1 + 1 + 1 + F\left( {\frac{{10}}{2}} \right)\\\;\;\;\;\;\;\;\;\;\;\; = 1 + 1 + 1 + F\left( 5 \right)\end{array}\)

Which is weird.

Thus, it does not produce a well-defined function

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free