Chapter 2: Q51E (page 137)
Find \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} \) and \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} \) if for every positive integer \(i\),
a)\({A_i} = \{ - i, - i + 1,...., - 1,0,1,.....,i - 1,i\} \)
b)\({A_i} = \{ - i,i\} \)
c)\({A_i} = ( - i,i)\), that is, the set of real numbers\(x\)with\( - i \le x \le i\)
d) \({A_i} = (i,\infty )\), that is, the set of real numbers \(x\)with \(x \ge i\)
Short Answer
Union \(A \cup B\):all elements that are either in \(A\)OR in \(B\)
Intersection \(A \cap B\):all elements that are both in \(A\)AND in \(B\)
\(X\)is a subset of \(Y\)if every element of \(X\)is also an element of \(Y\)
Notation \(X \subseteq Y\)
Idempotent Law
\(\begin{aligned}{l}A \cap A = A\\A \cap A = A\end{aligned}\)
Step by step solution
Achieve better grades quicker with Premium
Over 22 million students worldwide already upgrade their learning with Vaia!
Step 1
(a). Given: \({A_i} = \{ - i, - i + 1,..., - 1,0,1,...i - 1,i\} = \{ x \in Z\left| { - i \le x \le } \right.i\} \)
UNION
If \(i \le n\), the we note that \({A_i}\) is a subset of \({A_n}\)(because \(\{ - i, - i + 1,..., - 1,0,1,...i - 1,i\} \)is a part of \(\{ - n, - n + 1,..., - 1,0,1,...n - 1,n\} \)
\({A_i} \subset {A_n}\)
Let us take the union of all these sets\({A_i}\)with\(i \le n\)
\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} \)
Use the idempotent law:
\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} = {A_n}\)
By the definition of the union, we also know that
\({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \)
Since \(\bigcup\nolimits_{i = 1}^n {{A_i}} \subseteq {A_n}\) and \({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:
\(\bigcup\limits_{i = 1}^n {{A_i}} = {A_n}\)
Let us take the limit of\(n\):
\(\begin{array}{l}\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_n}\\ = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}\{ - n, - n + 1,..., - 1,0,1,...n - 1,n\} \\ = \{ - \infty ,...., - 1,0,1,...., + \infty \} \\ = Z\end{array}\)
Step 2
Intersection
If\(i \ge n\), then we note that\({A_1}\)is a subset of\({A_i}\):
\({A_1} \subset {A_i}\)
Let us take the intersections of all these sets\({A_i}\)with \(i \le n\)
(We note that\( - 1,0,1\)is always a part of\(\{ - i, - i + 1,..., - 1,0,1,...i - 1,i\} \)with\(i \ge 1\)):
\(\bigcap\limits_{i = 1}^n {{A_1}} \subseteq \bigcap\limits_{i = 1}^n {{A_i}} \)
Use impotent law:
\({A_1} = \bigcap\limits_{i = 1}^n {{A_1}} \subseteq \bigcap\limits_{i = 1}^n {{A_i}} \)
By the definition of the intersection, we also know that\(\bigcap\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\)
Since,\(\bigcap\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\)and\({A_1} \subseteq \bigcap\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:
\(\bigcap\limits_{i = 1}^n {{A_i}} = {A_1}\)
Let us take the limit of\(n\):
\(\bigcap\limits_{i = 1}^\infty {{A_i}} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_1} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}\{ - 1,0,1\} = \{ - 1,0,1\} \)
Step 3
(b) Given: \({A_i} = \{ - i, - i\} \)
UNION
Let us take the union of the first n sets:
\(\bigcup\limits_{i = 1}^n {{A_i}} = \{ - 1,1\} \cup \{ - 2,2\} \cup \{ - 3,3\} \cup ... \cup \{ - n,n\} \)
By the definition of the union, all elements in one of the sets is also in the union.
(Note: the union does not contain a zero):
\(\bigcup\limits_{i = 1}^n {{A_i}} = \{ - n,..., - 3, - 2, - 1,1,2,3,....,n\} \)
Let us take the limit of\(n\):
\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}\{ - n,..., - 3, - 2, - 1,1,2,3,....,n\} = \{ ...., - 3, - 2, - 1,1,2,3,...\} = Z - \{ 0\} \)
Step 4
Intersection:
Let us take the intersection of the first n sets:
\(\bigcup\limits_{i = 1}^n {{A_i}} = \{ - 1,1\} \cap \{ - 2,2\} \cap \{ - 3,3\} \cap ... \cap \{ - n,n\} \)
By the definition of the intersection, the intersection contains the elements that occur in all sets.
We note that\(\{ - 1,1\} \)and\(\{ - 2,2\} \)do not have any elements in common (which will also be true for any other pairs of\({A_i}\)).
\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \emptyset \)
Let us take the limit of n:
\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}\emptyset = \emptyset \)
Step 5
(c) Given: \({A_i} = ( - i, - i) = \{ x \in R\left| { - i \le x \le i\} } \right.\)
UNION
If\(i \le n\), then we note that\({A_i}\)is a subset of\({A_n}\)(because\(( - i, - i)\)is a part of\(( - n,n)\)):
\({A_i} \subset {A_n}\)
Let us take the union of all these sets\({A_i}\)with\(i \le n\):
\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} \)
Use the idempotent law:
\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} = {A_n}\)
By the definition of the union, we also know that
\({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \)
Since, \(\bigcup\nolimits_{i = 1}^n {{A_i}} \subseteq {A_n}\) and \({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:
\(\bigcup\limits_{i = 1}^n {{A_i}} = {A_n}\)
Let us take the limit of n:
\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_n} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}( - n,n) = ( - \infty ,\infty ) = R\)
Step 6
Intersection
If\(i \ge 1,\)then we note that\({A_1}\)is a subset of\({A_i}\):
\({A_1} \subset {A_i}\)
Let us take the intersections of all these sets\({A_i}\)with\(i \le n\)
(We note that\(( - 1,1)\)is always a part of\(( - i,i)\)with\(i \ge 1\)):
\(\bigcap\limits_{i = 1}^n {{A_1}} \subseteq \bigcap\limits_{i = 1}^n {{A_i}} \)
Use the idempotent law:
\({A_1} = \bigcap\limits_{i = 1}^n {{A_1}} \subseteq \bigcap\limits_{i = 1}^n {{A_i}} \)
By the definition of the intersection, we also know that
\(\bigcap\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\)
Since\(\bigcap\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\)and\({A_1} \subseteq \bigcap\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:
\(\bigcap\limits_{i = 1}^n {{A_i} = } {A_1}\)
Let us take the limit of n:
\(\bigcap\limits_{i = 1}^\infty {{A_i} = } \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_1} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}( - 1,1) = ( - 1,1)\)
Step 7
(d) Given: \({A_i} = ( - i,\infty ) = \{ x \in R\left| {x \ge i\} } \right.\)
UNION
If\(1 \le i\), then we note that\({A_i}\)is a subset of\({A_1}\):
\({A_i} \subset {A_1}\)
Let us take the union of all these sets\({A_i}\)with\(i \le n:\)
\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_1}} \)
Use idempotent law:
\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_1}} = {A_1}\)
By the definition of the union, we also know that\({A_1} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \)
Since \(\bigcup\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\) and \({A_1} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:
\(\bigcup\limits_{i = 1}^n {{A_i}} = {A_1}\)
Let us take the limit of n:
\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_i} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_1} = {A_1} = (1,\infty )\)
Step 8
Intersection
If\(1 \le i \le n\), then we note that\({A_i}\)is a subset of\({A_n}\):
\({A_i} \subset {A_n}\)
Let us take the intersections of all these sets\({A_i}\)with\(i \le n:\)
\(\bigcap\limits_{i = 1}^n {{A_i}} \subseteq \bigcap\limits_{i = 1}^n {{A_n}} \)
Use Idempotent law:
\(\bigcap\limits_{i = 1}^n {{A_i}} \subseteq \bigcap\limits_{i = 1}^n {{A_n}} = {A_n}\)
Let us take the limit of\(n\)
(Note that when\(i\)becomes infinitely large, then\({A_i}\)does not contain any elements):
\(\bigcap\limits_{i = 1}^\infty {{A_i} = } \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}\bigcap\limits_{i = 1}^n {{A_i}} \subseteq \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_n} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array} = (n,\infty ) = \emptyset \)
Since,\(\bigcap\nolimits_{i = 1}^\infty {{A_i}} \subseteq \emptyset \)and\(\emptyset \subset \bigcap\nolimits_{i = 1}^\infty {{A_i}} \)(empty set is subset of every set), the two sets have to be equal:
\(\bigcap\limits_{i = 1}^\infty {{A_i} = } \emptyset \)
Step 9
Thus, we conclude that:
- \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = \{ - \infty ,..., - 1,0,1,...., + \infty \} = Z\)and\(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = \{ - 1,0,1\} \)
- \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = \{ ..., - 3, - 2, - 1,1,2,3,....\} = Z - \{ 0\} \)and\(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = \emptyset \)
- \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = \{ - \infty ,\infty \} = R\)and\(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = {A_1} = ( - 1,1)\)
- \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = {A_1} = (1,\infty )\) and \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = \emptyset \)