Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} \) and \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} \) if for every positive integer \(i\),

a)\({A_i} = \{ - i, - i + 1,...., - 1,0,1,.....,i - 1,i\} \)

b)\({A_i} = \{ - i,i\} \)

c)\({A_i} = ( - i,i)\), that is, the set of real numbers\(x\)with\( - i \le x \le i\)

d) \({A_i} = (i,\infty )\), that is, the set of real numbers \(x\)with \(x \ge i\)

Short Answer

Expert verified

Union \(A \cup B\):all elements that are either in \(A\)OR in \(B\)

Intersection \(A \cap B\):all elements that are both in \(A\)AND in \(B\)

\(X\)is a subset of \(Y\)if every element of \(X\)is also an element of \(Y\)

Notation \(X \subseteq Y\)

Idempotent Law

\(\begin{aligned}{l}A \cap A = A\\A \cap A = A\end{aligned}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1

(a). Given: \({A_i} = \{ - i, - i + 1,..., - 1,0,1,...i - 1,i\} = \{ x \in Z\left| { - i \le x \le } \right.i\} \)

UNION

If \(i \le n\), the we note that \({A_i}\) is a subset of \({A_n}\)(because \(\{ - i, - i + 1,..., - 1,0,1,...i - 1,i\} \)is a part of \(\{ - n, - n + 1,..., - 1,0,1,...n - 1,n\} \)

\({A_i} \subset {A_n}\)

Let us take the union of all these sets\({A_i}\)with\(i \le n\)

\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} \)

Use the idempotent law:

\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} = {A_n}\)

By the definition of the union, we also know that

\({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \)

Since \(\bigcup\nolimits_{i = 1}^n {{A_i}} \subseteq {A_n}\) and \({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:

\(\bigcup\limits_{i = 1}^n {{A_i}} = {A_n}\)

Let us take the limit of\(n\):

\(\begin{array}{l}\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_n}\\ = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}\{ - n, - n + 1,..., - 1,0,1,...n - 1,n\} \\ = \{ - \infty ,...., - 1,0,1,...., + \infty \} \\ = Z\end{array}\)

02

Step 2

Intersection

If\(i \ge n\), then we note that\({A_1}\)is a subset of\({A_i}\):

\({A_1} \subset {A_i}\)

Let us take the intersections of all these sets\({A_i}\)with \(i \le n\)

(We note that\( - 1,0,1\)is always a part of\(\{ - i, - i + 1,..., - 1,0,1,...i - 1,i\} \)with\(i \ge 1\)):

\(\bigcap\limits_{i = 1}^n {{A_1}} \subseteq \bigcap\limits_{i = 1}^n {{A_i}} \)

Use impotent law:

\({A_1} = \bigcap\limits_{i = 1}^n {{A_1}} \subseteq \bigcap\limits_{i = 1}^n {{A_i}} \)

By the definition of the intersection, we also know that\(\bigcap\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\)

Since,\(\bigcap\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\)and\({A_1} \subseteq \bigcap\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:

\(\bigcap\limits_{i = 1}^n {{A_i}} = {A_1}\)

Let us take the limit of\(n\):

\(\bigcap\limits_{i = 1}^\infty {{A_i}} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_1} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}\{ - 1,0,1\} = \{ - 1,0,1\} \)

03

Step 3

(b) Given: \({A_i} = \{ - i, - i\} \)

UNION

Let us take the union of the first n sets:

\(\bigcup\limits_{i = 1}^n {{A_i}} = \{ - 1,1\} \cup \{ - 2,2\} \cup \{ - 3,3\} \cup ... \cup \{ - n,n\} \)

By the definition of the union, all elements in one of the sets is also in the union.

(Note: the union does not contain a zero):

\(\bigcup\limits_{i = 1}^n {{A_i}} = \{ - n,..., - 3, - 2, - 1,1,2,3,....,n\} \)

Let us take the limit of\(n\):

\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}\{ - n,..., - 3, - 2, - 1,1,2,3,....,n\} = \{ ...., - 3, - 2, - 1,1,2,3,...\} = Z - \{ 0\} \)

04

Step 4

Intersection:

Let us take the intersection of the first n sets:

\(\bigcup\limits_{i = 1}^n {{A_i}} = \{ - 1,1\} \cap \{ - 2,2\} \cap \{ - 3,3\} \cap ... \cap \{ - n,n\} \)

By the definition of the intersection, the intersection contains the elements that occur in all sets.

We note that\(\{ - 1,1\} \)and\(\{ - 2,2\} \)do not have any elements in common (which will also be true for any other pairs of\({A_i}\)).
\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \emptyset \)

Let us take the limit of n:

\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}\emptyset = \emptyset \)

05

Step 5

(c) Given: \({A_i} = ( - i, - i) = \{ x \in R\left| { - i \le x \le i\} } \right.\)

UNION

If\(i \le n\), then we note that\({A_i}\)is a subset of\({A_n}\)(because\(( - i, - i)\)is a part of\(( - n,n)\)):

\({A_i} \subset {A_n}\)

Let us take the union of all these sets\({A_i}\)with\(i \le n\):

\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} \)

Use the idempotent law:

\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} = {A_n}\)

By the definition of the union, we also know that

\({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \)

Since, \(\bigcup\nolimits_{i = 1}^n {{A_i}} \subseteq {A_n}\) and \({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:

\(\bigcup\limits_{i = 1}^n {{A_i}} = {A_n}\)

Let us take the limit of n:

\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_n} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}( - n,n) = ( - \infty ,\infty ) = R\)

06

Step 6

Intersection

If\(i \ge 1,\)then we note that\({A_1}\)is a subset of\({A_i}\):

\({A_1} \subset {A_i}\)

Let us take the intersections of all these sets\({A_i}\)with\(i \le n\)

(We note that\(( - 1,1)\)is always a part of\(( - i,i)\)with\(i \ge 1\)):

\(\bigcap\limits_{i = 1}^n {{A_1}} \subseteq \bigcap\limits_{i = 1}^n {{A_i}} \)

Use the idempotent law:

\({A_1} = \bigcap\limits_{i = 1}^n {{A_1}} \subseteq \bigcap\limits_{i = 1}^n {{A_i}} \)

By the definition of the intersection, we also know that

\(\bigcap\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\)

Since\(\bigcap\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\)and\({A_1} \subseteq \bigcap\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:

\(\bigcap\limits_{i = 1}^n {{A_i} = } {A_1}\)

Let us take the limit of n:

\(\bigcap\limits_{i = 1}^\infty {{A_i} = } \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_1} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}( - 1,1) = ( - 1,1)\)

07

Step 7

(d) Given: \({A_i} = ( - i,\infty ) = \{ x \in R\left| {x \ge i\} } \right.\)

UNION

If\(1 \le i\), then we note that\({A_i}\)is a subset of\({A_1}\):

\({A_i} \subset {A_1}\)

Let us take the union of all these sets\({A_i}\)with\(i \le n:\)

\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_1}} \)

Use idempotent law:

\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_1}} = {A_1}\)

By the definition of the union, we also know that\({A_1} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \)

Since \(\bigcup\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\) and \({A_1} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:

\(\bigcup\limits_{i = 1}^n {{A_i}} = {A_1}\)

Let us take the limit of n:

\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_i} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_1} = {A_1} = (1,\infty )\)

08

Step 8

Intersection

If\(1 \le i \le n\), then we note that\({A_i}\)is a subset of\({A_n}\):

\({A_i} \subset {A_n}\)

Let us take the intersections of all these sets\({A_i}\)with\(i \le n:\)

\(\bigcap\limits_{i = 1}^n {{A_i}} \subseteq \bigcap\limits_{i = 1}^n {{A_n}} \)

Use Idempotent law:

\(\bigcap\limits_{i = 1}^n {{A_i}} \subseteq \bigcap\limits_{i = 1}^n {{A_n}} = {A_n}\)

Let us take the limit of\(n\)

(Note that when\(i\)becomes infinitely large, then\({A_i}\)does not contain any elements):

\(\bigcap\limits_{i = 1}^\infty {{A_i} = } \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}\bigcap\limits_{i = 1}^n {{A_i}} \subseteq \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array}{A_n} = \begin{array}{*{20}{c}}{\lim }\\{n \to \infty }\end{array} = (n,\infty ) = \emptyset \)

Since,\(\bigcap\nolimits_{i = 1}^\infty {{A_i}} \subseteq \emptyset \)and\(\emptyset \subset \bigcap\nolimits_{i = 1}^\infty {{A_i}} \)(empty set is subset of every set), the two sets have to be equal:

\(\bigcap\limits_{i = 1}^\infty {{A_i} = } \emptyset \)

09

Step 9

Thus, we conclude that:

  1. \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = \{ - \infty ,..., - 1,0,1,...., + \infty \} = Z\)and\(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = \{ - 1,0,1\} \)
  2. \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = \{ ..., - 3, - 2, - 1,1,2,3,....\} = Z - \{ 0\} \)and\(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = \emptyset \)
  3. \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = \{ - \infty ,\infty \} = R\)and\(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = {A_1} = ( - 1,1)\)
  4. \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = {A_1} = (1,\infty )\) and \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = \emptyset \)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free