Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How many ways are there to distribute five distinguishable objects into three indistinguishable boxes?

Short Answer

Expert verified

There are \({\rm{41}}\)ways to distribute five distinguishable objects into three indistinguishable boxes.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Concept Introduction

Counting is the act of determining the quantity or total number of objects in a set or a group in mathematics. To put it another way, to count is to say numbers in sequence while giving a value to an item in a group on a one-to-one basis. Objects are counted using counting numbers.

02

Step 2: How many ways are there to distribute five distinguishable objects

Consider the second-kind enthralling numbers,

\[{\rm{S(n,j) = }}\frac{{\rm{1}}}{{{\rm{j!}}}}\sum\limits_{{\rm{i = 0}}}^{{\rm{j - 1}}} {{{{\rm{( - 1)}}}^{\rm{i}}}} \left( {\begin{array}{*{20}{l}}{\rm{j}}\\{\rm{i}}\end{array}} \right){{\rm{(j - i)}}^{\rm{n}}}\]

The number of possible distributions of \[{\rm{n}}\] distinct objects into \[{\rm{k}}\] indistinguishable boxes is then:

\[\sum\limits_{{\rm{j = 1}}}^{\rm{k}} {\rm{S}} {\rm{(n,j) = }}\sum\limits_{{\rm{j = 1}}}^{\rm{k}} {\frac{{\rm{1}}}{{{\rm{j!}}}}} \sum\limits_{{\rm{i = 0}}}^{{\rm{j - 1}}} {{{{\rm{( - 1)}}}^{\rm{i}}}} \left( {\begin{array}{*{20}{l}}{\rm{j}}\\{\rm{i}}\end{array}} \right){{\rm{(j - i)}}^{\rm{n}}}\)

We want to know how many different methods there are to distribute five distinct things into three indistinguishable boxes.

\[\begin{array}{c}{\rm{n = 5}}\\{\rm{k = 3}}\end{array}\]

Let's find the second-order Stirling numbers with \({\rm{j = 1,2,3:}}\)

\(\begin{aligned}{c}{\rm{S(5,1) &= }}\frac{{\rm{1}}}{{{\rm{1!}}}}\sum\limits_{{\rm{i = 0}}}^{\rm{0}} {{{{\rm{( - 1)}}}^{\rm{i}}}} \left( {\begin{aligned}{*{20}{l}}{\rm{1}}\\{\rm{i}}\end{aligned}} \right){{\rm{(1 - i)}}^{\rm{5}}}\\{\rm{ &= }}\frac{{\rm{1}}}{{{\rm{1!}}}}{{\rm{( - 1)}}^{\rm{0}}}\left( {\begin{aligned}{*{20}{l}}{\rm{1}}\\{\rm{0}}\end{aligned}} \right){{\rm{(1 - 0)}}^{\rm{5}}}\\{\rm{ &= 1}}\\{\rm{S(5,2) &= }}\frac{{\rm{1}}}{{{\rm{2!}}}}\sum\limits_{{\rm{i = 0}}}^{\rm{1}} {{{{\rm{( - 1)}}}^{\rm{i}}}} \left( {\begin{aligned}{*{20}{l}}{\rm{2}}\\{\rm{i}}\end{aligned}} \right){{\rm{(2 - i)}}^{\rm{5}}}\\{\rm{ &= }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ \times }}\left( {{{{\rm{( - 1)}}}^{\rm{0}}}\left( {\begin{aligned}{*{20}{l}}{\rm{2}}\\{\rm{0}}\end{aligned}} \right){{{\rm{(2 - 0)}}}^{\rm{5}}}{\rm{ + ( - 1}}{{\rm{)}}^{\rm{1}}}\left( {\begin{aligned}{*{20}{l}}{\rm{2}}\\{\rm{1}}\end{aligned}} \right){{{\rm{(2 - 1)}}}^{\rm{5}}}} \right)\\{\rm{ &= }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ \times }}\left( {{{\rm{2}}^{\rm{5}}}{\rm{ + ( - 2)}}} \right)\\{\rm{ &= }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ \times (32 - 2)}}\\{\rm{ &= }}\frac{{\rm{1}}}{{\rm{2}}}{\rm{ \times (30)}}\\{\rm{ &= 15}}\end{aligned}\)

\(\begin{aligned}{c}{\rm{S(5,3) &= }}\frac{{\rm{1}}}{{{\rm{3!}}}}\sum\limits_{{\rm{i = 0}}}^{\rm{2}} {{{{\rm{( - 1)}}}^{\rm{i}}}} \left( {\begin{aligned}{*{20}{l}}{\rm{3}}\\{\rm{i}}\end{aligned}} \right){{\rm{(3 - i)}}^{\rm{5}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{6}}}{\rm{ \times }}\left( {{{{\rm{( - 1)}}}^{\rm{0}}}\left( {\begin{aligned}{*{20}{l}}{\rm{3}}\\{\rm{0}}\end{aligned}} \right){{{\rm{(3 - 0)}}}^{\rm{5}}}{\rm{ + ( - 1}}{{\rm{)}}^{\rm{1}}}\left( {\begin{aligned}{*{20}{l}}{\rm{3}}\\{\rm{1}}\end{aligned}} \right){{{\rm{(3 - 1)}}}^{\rm{5}}}{\rm{ + ( - 1}}{{\rm{)}}^{\rm{2}}}\left( {\begin{aligned}{*{20}{l}}{\rm{3}}\\{\rm{2}}\end{aligned}} \right){{{\rm{(3 - 2)}}}^{\rm{5}}}} \right)\\{\rm{ &= }}\frac{{\rm{1}}}{{\rm{6}}}{\rm{ \times }}\left( {{{\rm{3}}^{\rm{5}}}{\rm{ + ( - 3) \times }}{{\rm{2}}^{\rm{5}}}{\rm{ + 3}}} \right)\\{\rm{ &= }}\frac{{\rm{1}}}{{\rm{6}}}{\rm{ \times (243 - 96 + 3)}}\\{\rm{ &= }}\frac{{\rm{1}}}{{\rm{6}}}{\rm{ \times (150)}}\\{\rm{ &= 25}}\end{aligned}\)

The number of possible distributions of \[{\rm{n}}\]distinct objects into \[{\rm{k}}\]indistinguishable boxes is then:

\[\begin{array}{l}\sum\limits_{{\rm{j = 1}}}^{\rm{3}} {\rm{S}} {\rm{(5,j) = S(5,1) + S(5,2) + S(5,3)}}\\{\rm{ = 1 + 15 + 25}}\\{\rm{ = 41}}\end{array}\]

Hence, there are \[{\rm{41}}\] ways to distribute five distinguishable objects into three indistinguishable boxes.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free