Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find\(\bigcup\nolimits_{i = 1}^\infty {{A_i}} \)and\(\bigcap\nolimits_{i = 1}^\infty {{A_i}} \)if for every positive integer\(i\),

(a)\({A_i} = \{ i,i + 1,i + 2,...\} \)

(b)\({A_i} = \{ 0,i\} \)

(c)\({A_i} = (0,i)\), that is, the set of real numbers\(x\)with\(0 < x < i\)

(d)\({A_i} = (i,\infty )\), that is, the set of real numbers\(x\)with\(x > i\)

Short Answer

Expert verified

(a) \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = {A_1} = \{ 1,2,3,....\} \) and \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = \emptyset \)

(b) \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = \{ 0,1,2,3,....\} = N\) and \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = \{ 0\} \)

(c) \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = \{ 0,\infty \} \) and \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = {A_1} = (0,1)\)

(d) \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = {A_1} = (1,\infty )\) and \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = \emptyset \)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1

Union\(A \cup B\): all elements that are either in\(A\)OR in\(B\)

Intersection\(A \cap B\): all elements that are both in\(A\)AND in\(B\)

\(X\)is a subset of\(Y\)if every element of\(X\)is also an element of\(Y\)

Notation\(X \subseteq Y\)

Idempotent Law

\(\begin{aligned}{l}A \cap A = A\\A \cap A = A\end{aligned}\)

02

Step 2

(a) \({A_i} = \{ i,i + 1,i + 2,....\} = \{ x \in N\left| {x \ge } \right.i\} \)

UNION

If\(1 \le i\), then we note that\({A_i}\)is a subset of\({A_1}\):\({A_i} \subset {A_1}\)

Let us take the union of all these sets \({A_i}\)is a subset of \({A_1}\): \(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_1}} \)

Use the Idempotent law: \(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_1}} = {A_1}\)

By the definition of the union, we also know that\({A_1} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \)

Since \(\bigcup\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\) and \({A_1} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:\(\bigcup\limits_{i = 1}^n {{A_i}} = {A_1}\)

\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}\bigcup\limits_{i = 1}^n {{A_i}} = \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}{A_1} = {A_1}\)

03

Step 3

INTERSECTION

If\(1 \le i \le n\), then we note that\({A_i}\)is a subset of\({A_n}\):\({A_i} \subset {A_n}\)

Let us take the intersections of all these sets\({A_i}\)with\(i \le n\):

\(\bigcap\limits_{i = 1}^n {{A_i}} \subseteq \bigcap\limits_{i = 1}^n {{A_n}} \)

Use the idempotent law:\(\bigcap\limits_{i = 1}^n {{A_i}} \subseteq \bigcap\limits_{i = 1}^n {{A_n}} = {A_n}\)

Let us take the limit of\(n\)

\(\bigcap\limits_{i = 1}^\infty {{A_i}} = \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}\bigcap\limits_{i = 1}^n {{A_i}} \subseteq \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}{A_n} = \emptyset \)

Since \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} \subseteq \emptyset \) and \(\emptyset \subset \bigcap\nolimits_{i = 1}^\infty {{A_i}} \), the two sets have to be equal:

An empty set is subset of every set,

\(\bigcap\limits_{i = 1}^\infty {{A_i}} = \emptyset \)

04

Step 4

(b) Union:

Let us take the union of the first \(n\)sets:

\(\bigcup\limits_{i = 1}^n {{A_i}} = \{ 0,1\} \cup \{ 0,2\} \cup \{ 0,3\} \cup .... \cup \{ 0,n\} \)

By the definition of the union, all elements in one of the sets is also in the union:

\(\bigcup\limits_{i = 1}^n {{A_i}} = \{ 0,1,2,3,....,n\} \)

Let us take the limit of \(n\)

\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}\{ 0,1,2,3,....,n\} = \{ 0,1,2,3,....,n\} = N\)

05

Step 5

Intersection

Let us take the intersection of the first \(n\)sets:

\(\bigcup\limits_{i = 1}^n {{A_i}} = \{ 0,1\} \cap \{ 0,2\} \cap \{ 0,3\} \cap .... \cap \{ 0,n\} \)

By the definition of the intersection, the intersection contains the elements that occur in all sets.

We note that zero is the only element to occurs in each set.

\(\bigcap\limits_{i = 1}^n {{A_i}} = \{ 0\} \)

Let us take the limit of\(n\):

\(\bigcap\limits_{i = 1}^\infty {{A_i}} = \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}\{ 0\} = \{ 0\} \)

06

Step 6

(c)

Given: \({A_i} = (0,i) = \{ x \in R\left| {0 < x < i\} } \right.\)

UNION

If \(i \le n\), then we note that\({A_i}\)is a subset of\({A_n}\)(because\((0,i)\)is a part of\((0,n)\)):

\({A_i} \subset {A_n}\)

Let us take the union of all these sets \({A_i}\)with\(i \le n\):

\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} \)

Use the idempotent law:

\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} = {A_n}\)

By the definition of the union, we also know that

\({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \)

Since \(\bigcup\nolimits_{i = 1}^n {{A_i}} \subseteq {A_n}\) and \({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:

\(\bigcup\limits_{i = 1}^n {{A_i}} = {A_n}\)

Let us take the limit of \(n\):

\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}(0,n) = (0,\infty )\)

07

Step 7

INTERSECTION

If\(i \ge 1,\)then we note that\({A_1}\)is a subset of\({A_i}\):

\({A_1} \subset {A_i}\)

Let us take the intersections of all these sets\({A_i}\)with\(i \le n\)(we note that\((0,1)\)is always a part of\((0,i)\)with\(i \ge 1\)):

\(\bigcap\limits_{i = 1}^n {{A_1}} \subseteq \bigcap\limits_{i = 1}^n {{A_i}} \)

Use the idempotent law:

\({A_1} = \bigcap\limits_{i = 1}^n {{A_1}} \subseteq \bigcap\limits_{i = 1}^n {{A_i}} \)

By the definition of the intersection, we also know that \(\bigcap\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\)

Since \(\bigcap\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\)and \({A_1} \subseteq \bigcap\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:

\(\bigcap\limits_{i = 1}^n {{A_1}} = {A_1}\)

Let us take the limit of\(n\):

\(\bigcap\limits_{i = 1}^\infty {{A_i}} = \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}{A_1} = \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}(0,1) = (0,1)\)

08

Step 8

(d)

Given:\({A_i} = (i,\infty ) = \{ x \in R\left| {x > i\} } \right.\)

UNION

If \(1 \le i,\)then we note that \({A_i}\)is a subset of \({A_1}\):

\({A_i} \subset {A_1}\)

Let us take the union of all these sets \({A_i}\) with \(i \le n\):

\(\bigcup\limits_{i = 1}^n {{A_i} \subseteq } \bigcup\limits_{i = 1}^n {{A_1}} \)

Use the idempotent law:

\(\bigcup\limits_{i = 1}^n {{A_i} \subseteq } \bigcup\limits_{i = 1}^n {{A_1}} = {A_1}\)

By definition of the union, we also that \({A_1} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \).

Since, \(\bigcup\nolimits_{i = 1}^n {{A_i}} \subseteq {A_1}\) and \({A_1} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:

\(\bigcup\limits_{i = 1}^n {{A_i} = } {A_1}\)

Let us take the limit of \(n\):

\(\bigcup\limits_{i = 1}^\infty {{A_i}} = \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}\bigcup\limits_{i = 1}^n {{A_i}} = \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}{A_1} = {A_1} = (1,\infty )\)

09

Step 9

Intersection

If \(1 \le i \le n,\)then we note that\({A_i}\)is a subset of\({A_n}\):

\({A_i} \subset {A_n}\)

Let us take the intersections of all these sets\({A_i}\)with\(i \le n\):

\(\bigcap\limits_{i = 1}^n {{A_i}} \subseteq \bigcap\limits_{i = 1}^n {{A_n}} \)

Use idempotent law:

\(\bigcap\limits_{i = 1}^n {{A_i}} \subseteq \bigcap\limits_{i = 1}^n {{A_n}} = {A_n}\)

Let us take the limit of n:

\(\bigcap\limits_{i = 1}^\infty {{A_i}} = \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}\bigcap\limits_{i = 1}^\infty {{A_i}} \subseteq \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}\bigcap\limits_{i = 1}^\infty {{A_n}} = \begin{aligned}{\lim }\\{n \to \infty }\end{aligned}(n,\infty ) = \emptyset \)

Since, \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} \subseteq \emptyset \) and \(\emptyset \subset \bigcap\nolimits_{i = 1}^\infty {{A_i}} \), the two sets have to be equal:

\(\bigcap\limits_{i = 1}^\infty {{A_i}} = \emptyset \)

10

Step 10

We conclude that

(e) \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = {A_1} = \{ 1,2,3,....\} \) and \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = \emptyset \)

(f) \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = \{ 0,1,2,3,....\} = N\) and \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = \{ 0\} \)

(g) \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = \{ 0,\infty \} \) and \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = {A_1} = (0,1)\)

(h) \(\bigcup\nolimits_{i = 1}^\infty {{A_i}} = {A_1} = (1,\infty )\) and \(\bigcap\nolimits_{i = 1}^\infty {{A_i}} = \emptyset \)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free