Given:
\({A_i} = \{ ....., - 2, - 1,0,1,......,i\} = \{ x \in Z\left| {x \le i} \right.\} \)
- If\(i \le n\), then we note that\({A_i}\)is a subset of\({A_n}\):
\({A_i} \subset {A_n}\)
Let us take the union of all these sets\({A_i}\)with\(i \le n\):
\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} \)
Use the idempotent law:
\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} = {A_n}\)
By the definition of the union, we also know that\({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \)
Since,\(\bigcup\nolimits_{i = 1}^n {{A_i}} \subseteq {A_n}\)and\({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal:
\(\bigcup\limits_{i = 1}^n {{A_i}} = {A_n}\)