Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

a) Show that the recurrence relation

\(f(n){a_n} = g(n){a_{n - 1}} + h(n),\)

for\(n \ge 1\), and with\({a_0} = C\), can be reduced to a recurrence relation of the form.

\({{\bf{b}}_n} = {{\bf{b}}_{n - 1}} + {\bf{Q}}\left( {\bf{n}} \right){\bf{h}}\left( {\bf{n}} \right)\), where\({{\bf{b}}_n} = {\bf{g}}\left( {{\bf{n}} + {\bf{1}}} \right){\rm{ }}{\bf{Q}}\left( {{\bf{n}} + {\bf{1}}} \right){\rm{ }}{{\bf{a}}_n}\), with

\(Q(n) = (f(1)f(2) \cdots f(n - 1))/(g(1)g(2) \cdots g(n)).\)

b) Use part (a) to solve the original recurrence relation to obtain

\({a_n} = \frac{{C + \sum\limits_{i = 1}^n Q (i)h(i)}}{{g(n + 1)Q(n + 1)}}.\)

Short Answer

Expert verified

(a) The given recurrence relation can be reduced to a recurrence relation form is:bn=bn-1+Q(n)·h(n)

(b) The relation obtained is:

an=C+i=1nQ(i)·h(i)g(n+1)Q(n+1)

Step by step solution

01

Linear Homogeneous Recurrence Relations with Constant Coefficients definition

Suppose that\(\left\{ {{a_n}} \right\}\)satisfies the linear non-homogeneous recurrence relation

\({a_n} = {c_1}{a_{n - 1}} + {c_2}{a_{n - 2}} + \cdots + {c_k}{a_{n - k}} + F(n),\)Where\({c_1},{c_2}, \ldots ,{c_k}\)are real numbers, and

\(F(n) = \left( {{b_f}{n^t} + {b_{f - 1}}{n^{t - 1}} + \cdots + {b_1}n + {b_0}} \right){s^n},\)Where\({b_0},{b_1}, \ldots ,{b_t}\)and\(s\)are real numbers.

When\(s\)is not a root of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form\(\left( {{p_t}{n^t} + {p_{t - 1}}{n^{t - 1}} + \cdots + {p_{1n}} + {p_0}} \right){s^n}\)

When\(s\)is a root of this characteristic equation and its multiplicity is\(m\), there is a particular solution of the form:\({n^m}\left( {{p_t}{n^t} + {p_{t - 1}}{n^{t - 1}} + \cdots + {p_1}n + {p_0}} \right){s^n}.\)

02

Use Recurrence Relations for part (a) 

(a).

\(f(n){a_n} = g(n){a_{n - 1}} + h(n)n \ge 1{a_0} = C\)

Let \({b_n} = g(n + 1)Q(n + 1){a_n}\) and \(Q(n) = \frac{{f(1) \cdot f(2) \cdot \ldots \cdot f(n - 1)}}{{g(1) \cdot g(2) \cdot \ldots \cdot g(n)}}\)

\(\begin{aligned}{b_n} &= g(n + 1)Q(n + 1){a_n}\\{b_n} &= g(n + 1) \cdot \frac{{f(1) \cdot f(2) \cdot \ldots \cdot f(n)}}{{g(1) \cdot g(2) \cdot \ldots \cdot g(n + 1)}} \cdot {a_n}\\{b_n} &= \frac{{f(1) \cdot f(2) \cdot \ldots \cdot f(n)}}{{g(1) \cdot g(2) \cdot \ldots \cdot g(n)}} \cdot {a_n}\\{b_n} &= \frac{{f(1) \cdot f(2) \cdot \ldots \cdot f(n - 1)}}{{g(1) \cdot g(2) \cdot \ldots \cdot g(n)}} \cdot f(n) \cdot {a_n}\end{aligned}\)

Since,

\(\begin{aligned}f(n){a_n} &= g(n){a_{n - 1}} + h(n)\\f(n)a &= \frac{{f(1) \cdot f(2) \cdot \ldots \cdot f(n - 1)}}{{g(1) \cdot g(2) \cdot \ldots \cdot g(n)}} \cdot \left( {g(n){a_{n - 1}} + h(n)} \right)\\f(n)a &= g(n) \cdot \frac{{f(1) \cdot f(2) \cdot \ldots \cdot f(n - 1)}}{{g(1) \cdot g(2) \cdot \ldots \cdot g(n)}} \cdot {a_{n - 1}} + \frac{{f(1) \cdot f(2) \cdot \ldots \cdot f(n - 1)}}{{g(1) \cdot g(2) \cdot \ldots \cdot g(n)}} \cdot h(n)\\f(n)a &= g(n) \cdot Q(n) \cdot {a_{n - 1}} + Q(n) \cdot h(n)\\f(n)a &= {b_{n - 1}} + Q(n) \cdot h(n)\end{aligned}\)

03

Use Recurrence Relations for part (b)

(b).

Result part (a):\({b_n} = {b_{n - 1}} + Q(n) \cdot h(n)\)

Applying the recurrence relation repeatedly, we obtain:

\(\begin{aligned}{b_n} = {b_{n - 1}} + Q(n) \cdot h(n)\\{b_n} = {b_{n - 2}} + Q(n - 1) \cdot h(n - 1) + Q(n) \cdot h(n)\\{b_n} = {b_{n - 3}} + Q(n - 2) \cdot h(n - 2) + Q(n - 1) \cdot h(n - 1) + Q(n) \cdot h(n) = \ldots \\{b_n} = {b_1} + Q(2) \cdot h(2) + \ldots + Q(n - 1) \cdot h(n - 1) + Q(n) \cdot h(n)\\{b_n} = {b_0} + Q(1) \cdot h(1) + Q(2) \cdot h(2) + \ldots + Q(n - 1) \cdot h(n - 1) + Q(n) \cdot h(n)\\{b_n} = {b_0} + \sum\limits_{i = 1}^n Q (i) \cdot h(i)\end{aligned}\)

We defined\({b_n}\)as\({b_n} = g(n + 1)Q(n + 1){a_n}\)

\(\begin{aligned}{a_n} &= \frac{{{b_n}}}{{g(n + 1)Q(n + 1)}}\\ &= \frac{{{b_0} + \sum\limits_{i = 1}^n Q (i) \cdot h(i)}}{{g(n + 1)Q(n + 1)}}\\ &= \frac{{{a_0} + \sum\limits_{i = 1}^n Q (i) \cdot h(i)}}{{g(n + 1)Q(n + 1)}}\\ &= \frac{{C + \sum\limits_{i = 1}^n Q (i) \cdot h(i)}}{{g(n + 1)Q(n + 1)}}\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free