Given: \({A_i} = \{ 1,2,3,...,i\} \)\( = \{ x \in {\rm N}\left| {x > 0 \wedge x \le i\} } \right.\)
(a) If \(i \le n\), then we note that \({A_i}\) is a subset of \({A_n}\):
\({A_i} \subset {A_n}\)
Let us take the union of all these sets \({A_i}\) with \(i \le n\)
\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} \)
Use the idempotent law:
\(\bigcup\limits_{i = 1}^n {{A_i}} \subseteq \bigcup\limits_{i = 1}^n {{A_n}} = {A_n}\)
By the definition of the union, we also know that
\({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \)
Since, \(\bigcup\nolimits_{i = 1}^n {{A_i}} \subseteq {A_n}\) and \({A_n} \subseteq \bigcup\nolimits_{i = 1}^n {{A_i}} \), the two sets then have to be equal
Hence, \(\bigcup\limits_{i = 1}^n {{A_i}} = {A_n}\)