Case:-1
Suppose \(x \in A\) and \(x \notin B\)
\( \Rightarrow x \in A - B\)
Case:-2
Suppose \(x \notin A\)but\(x \in B\).
\( \Rightarrow x \in B - A\)
So,
\( \Rightarrow x \in \left( {A - B} \right) \cup \left( {B - A} \right)\)
\( \Rightarrow \left( {A \cup B} \right) - \left( {A \cap B} \right) \subseteq \left( {A - B} \right) \cup \left( {B - A} \right)\)_____________(i)
Converse part
Let \(x \in \left( {A - B} \right) \cup \left( {B - A} \right)\)
Either ,\(x \in A - B\) or \(x \in B - A\).
Case:-1
\(x \in A - B\)then \(x \in A\)but \(x \notin B\).
So, \(x \in \left( {A \cup B} \right)\) but \(x \notin \left( {A \cap B} \right)\).
\( \Rightarrow x \in \left( {A \cup B} \right) - \left( {A \cap B} \right)\)
Case:-2
\(x \in B - A\)then \(x \in B\)but\(x \notin A\).
So, \(x \in \left( {B \cup A} \right)\)but\(x \notin A\left( {B \cap A} \right)\).
So, \(x \in \left( {A \cup B} \right) - \left( {A \cap B} \right)\)
\( = \left( {A - B} \right) \cup \left( {B - A} \right) \subseteq \left( {A \cup B} \right) - \left( {A \cap B} \right)\)____________(ii)
From (i) and (ii)
\( \Rightarrow \left( {A \cup B} \right) - \left( {A \cap B} \right) = \left( {A - B} \right) \cup \left( {B - A} \right)\)
Hence, \(A \oplus B = \left( {A - B} \right) \cup \left( {B - A} \right)\).