Case (1)
Suppose \(x \in A\) but \(x \notin {\bf{B}}\)
\( \Rightarrow x \in A - B\)
So,\(x \in \left( {A - B} \right) \cup \left( {B - A} \right)\)
Case (2)
Suppose
\(x \notin A\), \(x \in B\)
\( \Rightarrow x \in B - A\)
So, \(x \in \left( {A - B} \right) \cup \left( {B - A} \right)\)
Hence ,\(\left( {A \cup B} \right) - \left( {A \cap B} \right) \subseteq \left( {A - B} \right) \cup \left( {B - A} \right)\)._____________(i)
Converse part :- let \(x \in \left( {A - B} \right) \cup \left( {B - A} \right)\)
Either \(x \in A - B\) or \(x \in B - A\).
Case (1)
\( \Rightarrow x \in A - B\)then \(x \in A\)but \(x \notin B\)
So, \(x \in \left( {A \cup B} \right)\)but \(x \notin \left( {A \cap B} \right)\)
So \(x \in \left( {A \cup B} \right) - \left( {A \cap B} \right)\)
Case (2)
\(x \in B - A\)then but \(x \notin A\).
So, \(x \in \left( {B \cup A} \right)\) and \(x \notin \left( {B \cap A} \right)\)
So, \(x \in \left( {A \cup B} \right) - \left( {A \cap B} \right)\)
\(\left( {A - B} \right) \cup \left( {B - A} \right) \subseteq \left( {A \cup B} \right) - \left( {A \cap B} \right)\)___________(ii)
From (i) and (ii)
\(\left( {A - B} \right) \cup \left( {B - A} \right) = \left( {A \cup B} \right) - \left( {A \cap B} \right)\)
So, \(A \oplus B = \left( {A \cup B} \right) - \left( {A \cap B} \right)\).