Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the value of each of these sums of terms of a geometric progression?

j=0832jj=182jj=28(3)jj=082(3)j

Short Answer

Expert verified

Thus, the sum of terms of a geometric progression is given below:

  1. 1533
  2. 510
  3. 4923
  4. 9842

Step by step solution

01

Step 1:

(a) Given : j=0832j

Use the geometric series sum formula to compute the sum.

Note that a0=3(2)0andr=2

a0rn+11r1=329121=1533

02

Step 2:

Given: :j=182j

Change the base, so that the geometric series sum formula can be used.

Let k = j - 1 so that j = k + 1

Now, a0=21=2andr=2

=k=072k+1=a0rn+11r1=228121=510

03

Step 3:

(c) Given j=28(3)j

Change the base, so that the geometric series sum formula can be used.

Let k = j - 2 so that j = k + 2

Now, a0=(3)2=9andr=3

=a0rn+11r1=9(3)7131=4923

04

Step 4:

(d) Given j=082(3)j

Use the geometric series sum formula to compute the sum.

Note that a0=2(3)0=2andr=3

=a0rn+11r1=2(3)9131=9842

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free