Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct a deterministic finite-state automaton that recognizes the set of all bit strings that begin and end with 11.

Short Answer

Expert verified

The result is

State

0

1

\({{\mathbf{s}}_{\mathbf{0}}}\)

\({{\mathbf{s}}_{\mathbf{3}}}\)

\({{\mathbf{s}}_{\mathbf{1}}}\)

\({{\mathbf{s}}_{\mathbf{1}}}\)

\({{\mathbf{s}}_{\mathbf{3}}}\)

\({{\mathbf{s}}_{\mathbf{2}}}\)

\({{\mathbf{s}}_{\mathbf{2}}}\)

\({{\mathbf{s}}_{\mathbf{6}}}\)

\({{\mathbf{s}}_{\mathbf{2}}}\)

\({{\mathbf{s}}_{\mathbf{3}}}\)

\({{\mathbf{s}}_{\mathbf{3}}}\)

\({{\mathbf{s}}_{\mathbf{3}}}\)

\({{\mathbf{s}}_{\mathbf{4}}}\)

\({{\mathbf{s}}_{\mathbf{4}}}\)

\({{\mathbf{s}}_{\mathbf{5}}}\)

\({{\mathbf{s}}_{\mathbf{5}}}\)

\({{\mathbf{s}}_{\mathbf{2}}}\)

\({{\mathbf{s}}_{\mathbf{6}}}\)

\({{\mathbf{s}}_{\mathbf{6}}}\)

\({{\mathbf{s}}_{\mathbf{4}}}\)

\({{\mathbf{s}}_{\mathbf{5}}}\)

Step by step solution

01

Construction of deterministic finite-state automaton.

Let \(\mathbf{S=\{11\}\{0,1\}*\{11\}}\).

Let us consider states are \({{\mathbf{s}}_{\mathbf{0}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{1}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{2}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{3}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{4}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{5}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{6}}}\).

Let start state be \({{\mathbf{s}}_{\mathbf{0}}}\). Since the empty string is not in the set S, \({{\mathbf{s}}_{\mathbf{0}}}\) is not a final state.

The state \({{\mathbf{s}}_{\mathbf{1}}}\) has the first and last two digits were 11.

The state \({{\mathbf{s}}_{\mathbf{2}}}\) give that the first and last two digits were 01.

The state \({{\mathbf{s}}_{\mathbf{3}}}\) shows that the first digits is 0 and last digits are 01.

The state \({{\mathbf{s}}_{\mathbf{4}}}\)has that the last two digits are 00.

The state \({{\mathbf{s}}_{\mathbf{5}}}\) gives that the last two digits are 01.

The state \({{\mathbf{s}}_{\mathbf{6}}}\) shows that the last two digits are 10.

If the input starts with a 1, then it moves on to a non-final state\({{\mathbf{s}}_{\mathbf{3}}}\). Once it is at state, it will remain at this state\({{\mathbf{s}}_{\mathbf{3}}}\).

If the input start with a 1, then it moves on to a non-final state\({{\mathbf{s}}_{\mathbf{1}}}\). It moves on to the final state \({{\mathbf{s}}_{\mathbf{2}}}\), if the next digit is a 1, else it moves on to the non-final state \({{\mathbf{s}}_{\mathbf{3}}}\).

Next, it moves between \({{\mathbf{s}}_{\mathbf{2}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{3}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{4}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{5}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{6}}}\) and keep track of the last two digits.

The state \({{\mathbf{s}}_{\mathbf{2}}}\) will be the final state, because if it arrives at state \({{\mathbf{s}}_{\mathbf{2}}}\), then the string begins with 11 and ends with 11.

02

Sketch of deterministic finite-state automaton.

The sketch of deterministic finite-state automation can be drawn by seven states\({{\mathbf{s}}_{\mathbf{0}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{1}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{2}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{3}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{4}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{5}}}\mathbf{,}{{\mathbf{s}}_{\mathbf{6}}}\). The sketch is

03

Other way of representing in tabular form.

State

0

1

\({{\mathbf{s}}_{\mathbf{0}}}\)

\({{\mathbf{s}}_{\mathbf{3}}}\)

\({{\mathbf{s}}_{\mathbf{1}}}\)

\({{\mathbf{s}}_{\mathbf{1}}}\)

\({{\mathbf{s}}_{\mathbf{3}}}\)

\({{\mathbf{s}}_{\mathbf{2}}}\)

\({{\mathbf{s}}_{\mathbf{2}}}\)

\({{\mathbf{s}}_{\mathbf{6}}}\)

\({{\mathbf{s}}_{\mathbf{2}}}\)

\({{\mathbf{s}}_{\mathbf{3}}}\)

\({{\mathbf{s}}_{\mathbf{3}}}\)

\({{\mathbf{s}}_{\mathbf{3}}}\)

\({{\mathbf{s}}_{\mathbf{4}}}\)

\({{\mathbf{s}}_{\mathbf{4}}}\)

\({{\mathbf{s}}_{\mathbf{5}}}\)

\({{\mathbf{s}}_{\mathbf{5}}}\)

\({{\mathbf{s}}_{\mathbf{2}}}\)

\({{\mathbf{s}}_{\mathbf{6}}}\)

\({{\mathbf{s}}_{\mathbf{6}}}\)

\({{\mathbf{s}}_{\mathbf{4}}}\)

\({{\mathbf{s}}_{\mathbf{5}}}\)

Therefore, this is the require construction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free