Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To Determine a formula for the probability of \({E_1} \cup {E_2} \cup {E_3}\).

Short Answer

Expert verified

The probability formula \(p\left( {{E_1} \cup {E_2} \cup {E_3}} \right) = \sum\limits_{i = 1}^3 p \left( {{E_i}} \right) - \sum\limits_{1 \le i < j \le 3} p \left( {{E_i} \cap {E_j}} \right) + p\left( {{E_1} \cap {E_2} \cap {E_3}} \right)\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

 Given

The condition of probability \({E_1} \cup {E_2} \cup {E_3}\).

02

The Concept of Principle of inclusion-exclusion

Principle of inclusion-exclusion:

\(\left| {{A_1} \cup {A_2} \cup \ldots \cup {A_n}} \right| = \sum\limits_{1 \le i \le n} {\left| {{A_i}} \right|} - \sum\limits_{1 \le i < j \le n} {\left| {{A_i} \cap {A_j}} \right|} + \sum\limits_{1 \le i < j < k \le n} {\left| {{A_i} \cap {A_j} \cap {A_k}} \right|} \quad - \ldots . + \left| {{A_1} \cap {A_2} \cap \ldots . \cap {A_n}} \right|\)

03

Determine the probability Formula

Principle of inclusion-exclusion:

\(\left| {{A_1} \cup {A_2} \cup \ldots \cup {A_n}} \right| = \sum\limits_{1 \le i \le n} {\left| {{A_i}} \right|} - \sum\limits_{1 \le i < j \le n} {\left| {{A_i} \cap {A_j}} \right|} + \sum\limits_{1 \le i < j < k \le n} {\left| {{A_i} \cap {A_j} \cap {A_k}} \right|} \quad - \ldots . + \left| {{A_1} \cap {A_2} \cap \ldots . \cap {A_n}} \right|\)

The probability of any event\(E \subseteq S\)is\(p\left( {{E_i}} \right) = \frac{{|E|}}{{|S|}}\).

Thus, using the inclusion-exclusion principle:

\(\begin{array}{c}p\left( {{E_1} \cup {E_2} \cup {E_3}} \right) = \frac{{\left| {{E_1} \cup {E_2} \cup {E_3}} \right|}}{{|S|}}\\ = \frac{{\left| {{E_1}} \right| + \left| {{E_2}} \right| + \left| {{E_3}} \right| - \left| {{E_1} \cap {E_2}} \right| - \left| {{E_1} \cap {E_3}} \right| - \left| {{E_2} \cap {E_3}} \right| + \left| {{E_1} \cap {E_2} \cap {E_3}} \right|}}{{|S|}}\\p\left( {{E_1} \cup {E_2} \cup {E_3}} \right) = \sum\limits_{i = 1}^3 p \left( {{E_i}} \right) - \sum\limits_{1 \le i < j \le 3} p \left( {{E_i} \cap {E_j}} \right) + p\left( {{E_1} \cap {E_2} \cap {E_3}} \right)\end{array}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free