Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let A, B, and C be sets. Show that (A − B) − C = (A − C) − (B − C).

Short Answer

Expert verified

Thus, here we prove it\(\left( {A - B} \right) - C = \left( {A - C} \right) - \left( {B - C} \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given

Given in the question A, B and C is a set. Now here we prove it\(\left( {A - B} \right) - C = \left( {A - C} \right) - \left( {B - C} \right)\).

02

solution

Here we solve this expression\(\left( {A - C} \right) - \left( {B - C} \right) = \left( {A - B} \right) - C\).

Let us solve RHS,

\(\left( {A - C} \right) - \left( {B - C} \right)\)

We know that,

\( \Rightarrow \)\(A - C\)= \(A \cap \mathop C\limits^\_ \)

Here we use this formula to solve our question,

\(\begin{aligned}{c}\left( {A - C} \right) - \left( {B - C} \right) = \left( {A \cap \mathop C\limits^\_ } \right) - \left( {B \cap \mathop C\limits^\_ } \right)\\ = \left( {A \cap \mathop C\limits^\_ } \right) - \left( {\mathop B\limits^\_ \cap C} \right)\\ = \left( {\left( {A \cap \mathop C\limits^\_ } \right) \cap \mathop B\limits^\_ } \right) \cup \left( {\left( {A \cap \mathop C\limits^\_ } \right) \cap C} \right)\\ = \left( {A \cap \left( {\mathop C\limits^\_ \cap \mathop B\limits^\_ } \right)} \right) \cup \left( {A \cap \left( {\mathop C\limits^\_ \cap \mathop C\limits^\_ } \right)} \right)\end{aligned}\)

\(\left( {A - C} \right) - \left( {B - C} \right) = \left( {A \cap \left( {\mathop C\limits^\_ \cap \mathop B\limits^\_ } \right)} \right) \cup \left( {A \cap \phi } \right)\)

We also know that,\(A \cap \phi \)=\(\phi \).

\(\begin{aligned}{c}\left( {A - C} \right) - \left( {B - C} \right) = \left( {A \cap \left( {\mathop C\limits^\_ \cap \mathop B\limits^\_ } \right)} \right) \cup \phi \\ = A \cap \left( {\mathop C\limits^\_ \cap \mathop B\limits^\_ } \right)\\ = \left( {A \cap \mathop B\limits^\_ } \right) \cap \mathop C\limits^\_ \\ = \left( {A - B} \right) - C\end{aligned}\)

Hence ,

RHS = LHS

\(\left( {A - C} \right) - \left( {B - C} \right) = \left( {A - B} \right) - C\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free