Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine the check digit for the UPCs that have these initial 11 digits.

a) 73232184434

b) 63623991346

c) 04587320720

d) 93764323341

Short Answer

Expert verified

(a) Thus the check digit is \(5\)

(b) Thus the check digit is \(2\)

(c) Thus the check digit is \(0\)

(d) Thus the check digit is \(3\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1

For a USPS code \({x_1}{x_2} \ldots {x_{11}}{x_{12}}\) the following congruence holds:

02

Step 2

(a) Given :

\(73232184434\)

Use the above expression to calculate the check digit:

\(\begin{array}{l}3{x_1} + {x_2} + 3{x_3} + {x_4} + 3{x_ + }{x_6} + 3{x_7} + {x_8} + 3{x_9} + {x_{10}} + 3{x_{11}} + {x_{12}}\,mod\,10\\ = 3(7) + 3 + 3(2) + 3 + 3(2) + 1 + 3(8) + 4 + 3(4) + 3 + 3(4) + {x_{12}}\,mod\,10\\ = 21 + 3 + 6 + 3 + 6 + 1 + 24 + 4 + 12 + 3 + 12 + {x_{12}}\,mod\,10\\ = 95 + {x_{12}}\,mod\,10\\ = \left( {95\,mod\,10 + {x_{12}}} \right)\,mod\,10\\ = 5 + {x_{12}}\,mod\,10\end{array}\)

Since the expression should be equivalent with 0:

\(5 + {x_{12}}\,mod\,10 = 0\)

Subtract 5 from each side of the equation:

\({x_{12}}\,mod\,10 = - 5\,mod\,10 = 5\)

Thus the check digit is 5

03

Step 3

(b) Given :

\(63623991346\)

Use the above expression to calculate the check digit:

\(\begin{array}{l}3{x_1} + {x_2} + 3{x_3} + {x_4} + 3{x_ + }{x_6} + 3{x_7} + {x_8} + 3{x_9} + {x_{10}} + 3{x_{11}} + {x_{12}}\,mod\,10\\ = 3(6) + 3 + 3(6) + 2 + 3(3) + 9 + 3(9) + 1 + 3(3) + 4 + 3(6) + {x_{12}}\,mod\,10\\ = 18 + 3 + 18 + 2 + 9 + 9 + 27 + 1 + 9 + 4 + 18 + {x_{12}}\,mod\,10\\ = 118 + {x_{12}}\,mod\,10\\ = \left( {118\,mod\,10 + {x_{12}}} \right)\,mod\,10\\ = 8 + {x_{12}}\,mod\,10\end{array}\)

Since the expression should be equivalent with 0 :

\(8 + {x_{12}}\,mod\,10 = 0\)

Subtract 5 from each side of the equation:

\({x_{12}}\,mod\,10 = - 8\,mod\,10 = 2\)

Thus the check digit is 2

04

Step 4

(c) Given :

\(04587320720\)

Use the above expression to calculate the check digit:

\(\begin{array}{l}3{x_1} + {x_2} + 3{x_3} + {x_4} + 3{x_ + }{x_6} + 3{x_7} + {x_8} + 3{x_9} + {x_{10}} + 3{x_{11}} + {x_{12}}\,mod\,10\\ = 3(0) + 4 + 3(5) + 8 + 3(7) + 3 + 3(2) + 0 + 3(7) + 2 + 3(0) + {x_{12}}\,mod\,10\\ = 0 + 4 + 15 + 8 + 21 + 3 + 6 + 0 + 21 + 2 + 0 + {x_{12}}\,mod\,10\\ = 80 + {x_{12}}\,mod\,10\\ = \left( {80\,mod\,10 + {x_{12}}} \right)\,mod\,10\\ = 0 + {x_{12}}\,mod\,10\\ = {x_{12}}\,mod\,10\end{array}\)

Since the expression should be equivalent with 0 :

\({x_{12}}\,mod\,10 = 0\)

Thus the check digit is 0

05

Step 5

(d) Given :

\(93764323341\)

Use the above expression to calculate the check digit:

\(\begin{array}{l}3{x_1} + {x_2} + 3{x_3} + {x_4} + 3{x_ + }{x_6} + 3{x_7} + {x_8} + 3{x_9} + {x_{10}} + 3{x_{11}} + {x_{12}}mod10\\ = 3(9) + 3 + 3(7) + 6 + 3(4) + 3 + 3(2) + 3 + 3(3) + 4 + 3(1) + {x_{12}}\,mod\,10\\ = 27 + 3 + 21 + 6 + 12 + 3 + 6 + 3 + 9 + 4 + 3 + {x_{12}}\,mod\,10\\ = 97 + {x_{12}}\,mod\,10\\ = \left( {97\,mod\,10 + {x_{12}}} \right)\,mod\,10\\ = 7 + {x_{12}}\,mod\,10\end{array}\)

Since the expression should be equivalent with 0 :

\(7 + {x_{12}}\,mod\,10 = 0\)

Subtract 5 from each side of the equation:

\({x_{12}}\,mod\,10 = - 7\,mod\,10 = 3\)

Thus the check digit is 3.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free