Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove the second associative law from Table 1 by showing that if A, B, and C are sets, then A ∩ (B ∩ C) = (A ∩ B) ∩ C.

Short Answer

Expert verified

Thus, it is true \(\left( {A \cap B} \right) \cap C = A \cap \left( {B \cap C} \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given

Given in the question A, B, and C are set. now we proof here,

\(\left( {A \cap B} \right) \cap C = A \cap \left( {B \cap C} \right)\).

02

solution

Here we solve our question,

\(\left( {A \cap B} \right) \cap C = A \cap \left( {B \cap C} \right)\)

Solve the LHS part ,

\(x \in \left( {A \cap B} \right) \cap C\)

\( \Rightarrow x \in A\)and \(x \in B\)and\(x \in C\).

= (\(x \in A\) and \(x \in B\)) and\(x \in C\).

\( \Rightarrow x \in \left( {A \cap B} \right)\)and\(x \in C\).

\( \Rightarrow x \in \left( {A \cap B} \right) \cap C\)

\( \Rightarrow A \cap \left( {B \cap C} \right) \subseteq \left( {A \cap B} \right) \cap C\)________(i)

Now we solve part RHS

Let \(y \in \left( {A \cap B} \right) \cap C\).

\( \Rightarrow y \in A\)and \(y \in B\)and\(y \in C\)

\( \Rightarrow y \in A\)and (\(y \in B\) and \(y \in C\))

\( \Rightarrow y \in A\)and \(y \in \left( {B \cap A} \right)\).

\( \Rightarrow y \in A \cap \left( {B \cap A} \right)\)

\( \Rightarrow \left( {A \cap B} \right) \cap C \subseteq A \cap \left( {B \cap A} \right)\)__________________(ii)

Frome equation (i) and (ii)

\(\left( {A \cap B} \right) \cap C = A \cap \left( {B \cap A} \right)\)

Hence , LHS = RHS

\(\left( {A \cap B} \right) \cap C = A \cap \left( {B \cap A} \right)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free