Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that if \(A\) and \(B\) are sets with \(A \subseteq B\), then

(a) \(A \cup B = B\)

(b) \(A \cap B = A\)

Short Answer

Expert verified

(a) it is proved that \(A \cup B = B\).

(b) it is proved that \(A \cap B = A\).

Step by step solution

01

(a) Showing that \(A \cup B = B\).

It is given that \(A \subseteq B\). Thus,

\(A \subseteq B = \left\{ {x|x \in A \Rightarrow x \in B} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{a}}\;{\rm{subset}}\)

Solve the left hand side of set \(A \cup B\) as follows:

\(\begin{aligned}LHS &= A \cup B\\ &= \left\{ {x|x \in A \vee x \in B} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{union}}\\ &= \left\{ {x|x \in B \vee x \in B} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{a}}\;{\rm{subset}}\\ &= B\end{aligned}\)

\(LHS = RHS\)

Hence, it is proved that \(A \cup B = B\).

02

(b) Showing that \(A \cap B = A\).

It is given that \(A \subseteq B\). Thus,

\(A \subseteq B = \left\{ {x|x \in A \Rightarrow x \in B} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{a}}\;{\rm{subset}}\)

Solve the left hand side of set \(A \cup B\) as follows:

\(\begin{aligned}LHS &= A \cap B\\ &= \left\{ {x|x \in A \wedge x \in B} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{union}}\\ &= \left\{ {x|x \in A \wedge x \in A} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{a}}\;{\rm{subset}}\\ &= A\end{aligned}\)

\(LHS = RHS\)

Hence, it is proved that \(A \cap B = A\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free