Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine whether each of these function is \(O(x)\).

a) \(f(x) = 10\)

b)\(f(x) = 3x + 7\)

c)\(f(x) = {x^2} + x + 1\)

d)\(f(x) = 5\log x\)

e)\(f(x) = \left\lfloor x \right\rfloor \)

f)\(f(x) = \left\lceil {x/2} \right\rceil \)

Short Answer

Expert verified

a) The function\(f(x) = 10\)is\(O(x)\)with \(C = 10\) and \(k = 1\).

b) The function \(f(x) = 3x + 7\)is \(O(x)\)with \(C = 10\) and \(k = 1\).

c) The function\(f(x) = {x^2} + x + 1\)is not\(O(x)\).

d) The function\(f(x) = 5\log x\)is\(O(x)\)with \(C = 5\) and \(k = 1\).

e) The function\(f(x) = \left\lfloor x \right\rfloor \)is\(O(x)\)with \(C = 1\) and \(k = 1\).

f) The function\(f(x) = \left\lceil {x/2} \right\rceil \)is\(O(x)\)with \(C = 1\) and \(k = 2\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Subpart a) \(f(x) = 10\)Step 1:

Taking\(k = 1\)such that\(x > 1\),

We get,

\(\begin{aligned}{l}\left| {f(x)} \right| &= \left| {10} \right|\\ &= \left| {f(x)} \right| \le C\left| {g(x)} \right|\\ &= \left| {10} \right| \le C\left| {(x)} \right|\\ &= C\left| {g(x)} \right|\end{aligned}\)

02

(a) Step 2: 

We have\(10 \le C\left| {(x)} \right|\)and\(x > 1\)

Therefore,

\(\begin{aligned}{l}C \ge \frac{{10}}{{\left| x \right|}} > \frac{{10}}{1}\\ = 10\end{aligned}\)

Thus we take\(C = 10\)and by the definition the function\(f(x) = 10\)is\(O(x)\)with \(C = 10\) and \(k = 1\).

03

Subpart b) \(f(x) = 3x + 7\)Step 1:

Taking\(k = 1\)such that\(x > 1\),

We get,

\(\begin{aligned}{l}\left| {f(x)} \right| &= \left| {3x + 7} \right|\\ &= \left| {f(x)} \right| \le C\left| {g(x)} \right|\\ &= \left| {3x + 7} \right| \le C\left| {(x)} \right|\\ &= C\left| {g(x)} \right|\end{aligned}\)

04

(b) Step 2: 

We have\(x > 1\)so\(\left| x \right| > 1\)

Therefore,

\(\begin{aligned}{l}\left| {3x + 7} \right| \le \left| {3x} \right| + \left| 7 \right|\\ < 3\left| x \right| + 7\left| x \right|\\ < 10\left| x \right|\end{aligned}\)

Thus we take\(C = 10\)and by the definition the function\(f(x) = 3x + 7\)is\(O(x)\)with \(C = 10\) and \(k = 1\).

05

Subpart c) \(f(x) = {x^2} + x + 1\)Step 1:

The value of \({x^2}\)will increase if the value of \(x\) increases.

06

(c) Step 2: 

When the value of\(x\)increases, then the value of the constant\(C\)will also be a large number.

Therefore the inequality will be,

\(\left| {f(x)} \right| = \left| {{x^2} + x + 1} \right| \le C\left| x \right|\)

Thus we cannot find a value for\(C\)which will hold for all the lager values of\(x\)and by the definition the function\(f(x) = {x^2} + x + 1\)is not\(O(x)\).

07

Subpart d) \(f(x) = 5\log x\)Step 1:

Taking\(k = 1\)such that\(x > 1\),

We get,

\(\begin{aligned}{l}\left| {f(x)} \right| &= \left| {5\log x} \right|\\ &= \left| {f(x)} \right| \le C\left| {g(x)} \right|\\ &= \left| {5\log x} \right| \le C\left| {(x)} \right|\\ &= C\left| {g(x)} \right|\end{aligned}\)

08

(d) Step 2: 

Using the property we have \(\log x \le x\) if \(x > 0\),

Therefore,

\(\begin{aligned}{l}\left| {5\log x} \right| \le \left| {5x} \right|\\ = 5\left| x \right|\end{aligned}\)

Thus we take\(C = 5\)and by the definition the function\(f(x) = 5\log x\)is\(O(x)\)with \(C = 5\) and \(k = 1\).

09

Subpart e) \(f(x) = \left\lfloor x \right\rfloor \) Step 1:

Taking\(k = 1\)such that\(x > 1\),

We get,

\(\begin{aligned}{l}\left| {f(x)} \right| &= \left| {\left\lfloor x \right\rfloor } \right|\\ &= \left| {f(x)} \right| \le C\left| {g(x)} \right|\\ &= \left| {\left\lfloor x \right\rfloor } \right| \le C\left| {(x)} \right|\\ &= C\left| {g(x)} \right|\end{aligned}\)

10

(e) Step 2: 

By the definition of floor function,

We have\(x > 1\),

Therefore,

\(\begin{aligned}{l}\left| {\left\lfloor x \right\rfloor } \right| &= \left\lfloor x \right\rfloor \le x\\ &= \left| x \right|\end{aligned}\)

Thus we take\(C = 1\)and by the definition the function\(f(x) = \left\lfloor x \right\rfloor \)is\(O(x)\)with \(C = 1\) and \(k = 1\).

11

Subpart f) \(f(x) = \left\lceil {x/2} \right\rceil \)Step 1:

Taking\(k = 2\)such that\(x > 2\),

We get,

\(\begin{aligned}{l}\left| {f(x)} \right| &= \left| {\left\lceil {\frac{x}{2}} \right\rceil } \right|\\ &= \left| {f(x)} \right| \le C\left| {g(x)} \right|\\ &= \left| {\left\lceil {\frac{x}{2}} \right\rceil } \right| \le C\left| {(x)} \right|\\ &= C\left| {g(x)} \right|\end{aligned}\)

12

(f) Step 2: 

By the definition of ceiling function,

\(\begin{aligned}{l}\left| {\left\lceil {\frac{x}{2}} \right\rceil } \right| &= \left\lceil {\frac{x}{2}} \right\rceil \\ < \frac{x}{2} + 1\\ \le x\\ &= \left| x \right|\end{aligned}\)

Thus we take\(C = 1\)and by the definition the function\(f(x) = \left\lceil {x/2} \right\rceil \)is\(O(x)\)with \(C = 1\) and \(k = 2\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free