Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that if \(A\), \(B\) and \(C\) are sets, then \(\overline {A \cap B \cap C} = \overline A \cup \overline B \cup \overline C \).

(a) by showing each side is a subset of the other side.

(b) using a membership table.

Short Answer

Expert verified

(a) it is proved that \(\overline {A \cap B \cap C} = \overline A \cup \overline B \cup \overline C \).

(b) it is proved that \(\overline {A \cap B \cap C} = \overline A \cup \overline B \cup \overline C \) using a membership table.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

(a) Showing each side is a subset of the other side.

Solve the left hand side of set \(\overline {A \cap B \cap C} \) as follows:

\(\begin{aligned}LHS &= \overline {A \cap B \cap C} \\ &= \left\{ {x|x \notin A \cap B \cap C} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{compliment}}\\ &= \left\{ {x|\neg \left( {x \in A \cap B \cap C} \right)} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{does}}\;{\rm{not}}\;{\rm{belong}}\;{\rm{symbol}}\\ &= \left\{ {x|\neg \left( {x \in A \wedge x \in B \wedge x \in C} \right)} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{union}}\end{aligned}\)

\(\begin{aligned}LHS &= \left\{ {x|\neg \left( {x \in A} \right) \vee \neg \left( {x \in B} \right) \vee \neg \left( {x \in C} \right)} \right\}\;{\rm{by}}\;{\rm{De Morgan's law (for logical equivalence)}}\\ &= \left\{ {x|x \notin A \vee x \notin B \vee x \notin C} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{does}}\;{\rm{not}}\;{\rm{belong}}\;{\rm{symbol}}\\ &= \left\{ {x|x \in \overline A \vee x \in \overline B \vee x \in \overline C } \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{complement}}\end{aligned}\)

\(\begin{aligned}LHS &= \left\{ {x|x \in \overline A \cap \overline B \cap \overline C } \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{intersection}}\\ &= \overline A \cup \overline B \cup \overline C \;{\rm{by}}\,{\rm{set}}\;{\rm{builder}}\;{\rm{notation}}\\ &= RHS\end{aligned}\)

Hence, it is proved that \(\overline {A \cap B \cap C} = \overline A \cup \overline B \cup \overline C \).

02

Using membership table \(\overline {A \cap B \cap C}  = \overline A  \cup \overline B  \cup \overline C \).

Draw the table to solve the set as follows:

\(A\)

\(B\)

\(C\)

\(\overline A \)

\(\overline B \)

\(\overline C \)

\(A \cap B \cap C\)

\(\overline {A \cap B \cap C} \)

\(\overline A \cup \overline B \cup \overline C \)

1

1

1

0

0

0

1

0

0

1

1

0

0

0

1

0

1

1

1

0

1

0

1

0

0

1

1

1

0

0

0

1

1

0

1

1

0

1

1

1

0

0

0

1

1

0

1

0

1

0

1

0

1

1

0

0

1

1

1

0

0

1

1

0

0

0

1

1

1

0

1

1

Hence, it is proved that \(\overline {A \cap B \cap C} = \overline A \cup \overline B \cup \overline C \).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free