Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the solution to each of these recurrence relations and initial conditions. Use aniterative approach such as that used in Example 10.

a) \({{\bf{a}}_n} = 3{a_{n - 1}}\),\({{\bf{a}}_0} = 2\)

b) \({{\bf{a}}_n} = {a_{n - 1}} + 2\),\({{\bf{a}}_0} = 3\)

c) \({{\bf{a}}_n} = {a_{n - 1}} + n\),\({{\bf{a}}_0} = 1\)

d) \({{\bf{a}}_n} = {a_{n - 1}} + 2n + 3\),\({{\bf{a}}_0} = 4\)

e) \({{\bf{a}}_n} = 2{a_{n - 1}} - 1\),\({{\bf{a}}_0} = 1\)

f ) \({{\bf{a}}_n} = 3{a_{n - 1}} + 1\),\({{\bf{a}}_0} = 1\)

g) \({{\bf{a}}_n} = n{a_{n - 1}}\),\({{\bf{a}}_0} = 5\)

h) \({{\bf{a}}_n} = 2n{a_{n - 1}}\),\({{\bf{a}}_0} = 1\)

Short Answer

Expert verified

(a) The solution of \({a_n} = 3{a_{n - 1}}\) is \(2 \cdot {3^n}\).

(b) The solution of \({a_n} = {a_{n - 1}} + 2\) is\(3 + 2n\).

(c) The solution of \({a_n} = {a_{n - 1}} + n\) is\(\frac{{{n^2}}}{2} + \frac{n}{2} + 1\).

(d) The solution of \({a_n} = {a_{n - 1}} + 2n + 3\) is \({n^2} + 4n + 4\).

(e) The solution of \({a_n} = 2{a_{n - 1}} - 1\) is \(1\).

(f) The solution of \({a_n} = 3{a_{n - 1}} + 1\) is \(\frac{{{3^{n + 1}}}}{2} + \frac{1}{2}\).

(g) The solution of \({a_n} = n{a_{n - 1}}\) is\(5 \cdot n!\).

(h) The solution of \({a_n} = 2n{a_{n - 1}}\) is\({2^n} \cdot n!\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Significance of the recurrence relation

The recurrence relation mainly defines a particular sequence where the next term is referred to as the previous term’s function. The recurrence relation mainly provides a non-homogeneous solution.

02

(a) Determination of the first initial condition and recurrence relation

The given equation is expressed as:

\({a_n} = 3{a_{n - 1}}\)and \({a_0} = 2\)

The recurrence relation has been applied in the above equation.

\(\begin{array}{c}{a_n} = 3{a_{n - 1}}\\ = {3^1}{a_{n - 1}}\\3\left( {3{a^{n - 2}}} \right) = {3^2}{a_{n - 2}}\\{3^2}\left( {3{a^{n - 3}}} \right) = {3^3}{a_{n - 3}}\end{array}\)

Hence, continuing like this, the above equation will eventually be expressed as:

\(\begin{array}{c}{a_n} = {3^n}{a_{n - n}}\\ = {3^n}{a_0}\end{array}\)

Substitute \(2\) for \({a_0}\) in the above equation.

\({a_n} = 2 \cdot {3^n}\)

Thus, the solution of \({a_n} = 3{a_{n - 1}}\) is \(2 \cdot {3^n}\).

03

(b) Determination of the second initial condition and recurrence relation

The given equation is expressed as:

\({a_n} = {a_{n - 1}} + 2\)and \({a_0} = 3\)

The recurrence relation has been applied in the above equation.

\(\begin{array}{c}{a_n} = {a_{n - 1}} + 2\\ = {a_{n - 1}} + 2 \cdot 1\\{a_{n - 2}} + 2 + 2 = {a_{n - 2}} + 2 \cdot 2\\{a_{n - 2}} + 2 + 2 \cdot 2 = {a_{n - 3}} + 2 \cdot 3\end{array}\)

Hence, continuing like this, the above equation will eventually be expressed as:

\(\begin{array}{c}{a_n} = {a_{n - n}} + 2 \cdot n\\ = {a_0} + 2n\end{array}\)

Substitute \(3\) for \({a_0}\) in the above equation.

\({a_n} = 3 + 2n\)

Thus, the solution of \({a_n} = {a_{n - 1}} + 2\) is\(3 + 2n\).

04

(c) Determination of the third initial condition and recurrence relation

The given equation is expressed as:

\({a_n} = {a_{n - 1}} + n\)and \({a_0} = 1\)

The recurrence relation has been applied in the above equation.

\(\begin{array}{c}{a_n} = {a_{n - 1}} + n\\ = {a_{n - 1}} + n - 0\\{a_{n - 2}} + n - 1 + n = {a_{n - 2}} + 2n - \left( {0 + 1} \right)\\{a_{n - 3}} + n - 2 + 2n - 1 = {a_{n - 3}} + 3n - \left( {0 + 1 + 2} \right)\end{array}\)

Hence, continuing like this, the above equation will eventually be expressed as:

\(\begin{array}{c}{a_n} = {a_{n - n}} + n \cdot n - \sum\limits_{i = 0}^{n - 1} i \\ = {a_0} + {n^2} - \frac{{n\left( {n - 1} \right)}}{2}\end{array}\)

Substitute \(1\) for \({a_0}\) in the above equation.

\(\begin{array}{c}{a_n} = 1 + {n^2} - \frac{{n\left( {n - 1} \right)}}{2}\\ = \frac{{{n^2}}}{2} + \frac{n}{2} + 1\end{array}\)

Thus, the solution of \({a_n} = {a_{n - 1}} + n\) is\(\frac{{{n^2}}}{2} + \frac{n}{2} + 1\).

05

(d) Determination of the fourth initial condition and recurrence relation

The given equation is expressed as:

\({a_n} = {a_{n - 1}} + 2n + 3\)and \({a_0} = 4\)

The recurrence relation has been applied in the above equation.

\(\begin{array}{c}{a_n} = {a_{n - 1}} + 2n + 3\\ = {a_{n - 1}} + 2n + 1 \cdot 3\\{a_{n - 2}} + 2\left( {n - 1} \right) + 3 + 2n + 3 = {a_{n - 2}} + 2\left( {n + n - 1} \right) + 2 \cdot 3\\{a_{n - 3}} + 2\left( {n - 2} \right) + 3 + 2 \cdot 2n + 2 \cdot 3 = {a_{n - 3}} + 2\left( {n + n - 1 + n - 2} \right) + 3 \cdot 3\end{array}\)

Hence, continuing like this, the above equation will eventually be expressed as:

\(\begin{array}{c}{a_n} = {a_{n - n}} + 2\sum\limits_{i = 1}^n i + n \cdot 3\\ = {a_0} + 2\frac{{n\left( {n + 1} \right)}}{2} + 3n\end{array}\)

Substitute \(4\) for \({a_0}\) in the above equation.

\(\begin{array}{c}{a_n} = 4 + 2\frac{{n\left( {n + 1} \right)}}{2} + 3n\\ = 4 + n\left( {n + 1} \right) + 3n\\ = {n^2} + 4n + 4\end{array}\)

Thus, the solution of \({a_n} = {a_{n - 1}} + 2n + 3\) is\({n^2} + 4n + 4\).

06

(e) Determination of the fifth initial condition and recurrence relation

The given equation is expressed as:

\({a_n} = 2{a_{n - 1}} - 1\)and \({a_0} = 1\)

The recurrence relation has been applied in the above equation.

\(\begin{array}{c}{a_n} = 2{a_{n - 1}} - 1\\ = {2^1}{a_{n - 1}} - 1\\2\left( {2{a_{n - 2}} - 1} \right) - 1 = {2^2}{a_{n - 2}} - \left( {1 + 2} \right)\\2\left( {2{a_{n - 2}} - 1} \right) - \left( {1 + 2} \right) = {2^4}{a_{n - 4}} - \left( {1 + 2 + {2^2}} \right)\end{array}\)

Hence, continuing like this, the above equation will eventually be expressed as:

\(\begin{array}{c}{a_n} = {2^n}{a_{n - n}} - \sum\limits_{i = 0}^{n - 1} {{2^i}} \\ = {2^n}{a_0} - \frac{{{2^n} - 1}}{{2 - 1}}\end{array}\)

Substitute \(1\) for \({a_0}\) in the above equation.

\(\begin{array}{c}{a_n} = {2^n} - \frac{{{2^n} - 1}}{{2 - 1}}\\ = {2^n} - {2^n} + 1\\ = 1\end{array}\)

Thus, the solution of \({a_n} = 2{a_{n - 1}} - 1\) is \(1\).

07

(f) Determination of the sixth initial condition and recurrence relation

The given equation is expressed as:

\({a_n} = 3{a_{n - 1}} + 1\)and \({a_0} = 1\)

The recurrence relation has been applied in the above equation.

\(\begin{array}{c}{a_n} = 3{a_{n - 1}} + 1\\ = {3^1}{a_{n - 1}} + 1\\3\left( {3{a_{n - 2}} + 1} \right) + 1 = {3^2}{a_{n - 2}} + \left( {1 + 3} \right)\\3\left( {3{a_{n - 3}} + 1} \right) - \left( {1 + 3} \right) = {3^4}{a_{n - 3}} - \left( {1 + 3 + {3^2}} \right)\end{array}\)

Hence, continuing like this, the above equation will eventually be expressed as:

\(\begin{array}{c}{a_n} = {3^n}{a_{n - n}} + \sum\limits_{i = 0}^{n - 1} {{3^i}} \\ = {3^n}{a_0} - \frac{{{3^n} - 1}}{{3 - 1}}\end{array}\)

Substitute \(1\) for \({a_0}\) in the above equation.

\(\begin{array}{c}{a_n} = {3^n} - \frac{{{3^n} - 1}}{2}\\ = {3^n} - \frac{{{3^n}}}{2} + \frac{1}{2}\\ = \frac{{{3^{n + 1}}}}{2} + \frac{1}{2}\end{array}\)

Thus, the solution of \({a_n} = 3{a_{n - 1}} + 1\) is \(\frac{{{3^{n + 1}}}}{2} + \frac{1}{2}\).

08

(g) Determination of the seventh initial condition and recurrence relation

The given equation is expressed as:

\({a_n} = n{a_{n - 1}}\)and \({a_0} = 5\)

The recurrence relation has been applied in the above equation.

\(\begin{array}{c}{a_n} = n{a_{n - 1}}\\n\left( {\left( {n - 1} \right){a_{n - 2}}} \right) = \left( {n\left( {n - 1} \right)} \right){a_{n - 2}}\\n\left( {n - 1} \right)\left( {\left( {n - 2} \right){a_{n - 3}}} \right) = \left( {n\left( {n - 1} \right)\left( {n - 2} \right)} \right){a_{n - 3}}\end{array}\)

Hence, continuing like this, the above equation will eventually be expressed as:

\(\begin{array}{c}{a_n} = \left( {n\left( {n - 1} \right)\left( {n - 2} \right)...\left( 1 \right)} \right){a_{n - n}}\\ = n!{a_0}\end{array}\)

Substitute \(5\) for \({a_0}\) in the above equation.

\(\begin{array}{c}{a_n} = n!\left( 5 \right)\\ = 5 \cdot n!\end{array}\)

Thus, the solution of \({a_n} = n{a_{n - 1}}\) is\(5 \cdot n!\).

09

(h) Determination of the eighth initial condition and recurrence relation

The given equation is expressed as:

\({a_n} = 2n{a_{n - 1}}\)and \({a_0} = 1\)

The recurrence relation has been applied in the above equation.

\(\begin{array}{c}{a_n} = 2n{a_{n - 1}}\\ = {2^1}\left( n \right){a_{n - 1}}\\2n\left( {2\left( {n - 1} \right){a_{n - 2}}} \right) = {2^2}\left( {n\left( {n - 1} \right)} \right){a_{n - 2}}\\{2^2}n\left( {n - 1} \right)\left( {2\left( {n - 2} \right){a_{n - 3}}} \right) = {2^3}\left( {n\left( {n - 1} \right)\left( {n - 2} \right)} \right){a_{n - 3}}\end{array}\)

Hence, continuing like this, the above equation will eventually be expressed as:

\(\begin{array}{c}{a_n} = {2^n}\left( {n\left( {n - 1} \right)\left( {n - 2} \right)...\left( 1 \right)} \right){a_{n - n}}\\ = {2^n} \cdot n!{a_0}\end{array}\)

Substitute \(1\) for \({a_0}\) in the above equation.

\(\begin{array}{c}{a_n} = {2^n} \cdot n!\left( 1 \right)\\ = {2^n}n!\end{array}\)

Thus, the solution of \({a_n} = 2n{a_{n - 1}}\) is\({2^n} \cdot n!\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free