Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(A\) and \(B\) be sets. Show that

(a) \(\left( {A \cap B} \right) \subseteq A\)

(b) \(A \subseteq \left( {A \cup B} \right)\)

(c) \(A - B \subseteq A\)

(d) \(A \cap \left( {B - A} \right) = \phi \)

(e) \(A \cup \left( {B - A} \right) = A \cup B\)

Short Answer

Expert verified

(a) it is proved that \(\left( {A \cap B} \right) \subseteq A\).

(b) it is proved that \(A \subseteq \left( {A \cup B} \right)\).

(c) it is proved that \(A - B \subseteq A\).

(d) it is proved that \(A \cap \left( {B - A} \right) = \phi \).

(e) it is proved that \(A \cup \left( {B - A} \right) = A \cup B\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

(a) Showing that \(\left( {A \cap B} \right) \subseteq A\).

Solve the left hand side of set \(A \cap B\) as follows:

\(\begin{aligned}LHS &= A \cap B\\ &= \left\{ {x|x \in A \cap B} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{compliment}}\\ &= \left\{ {x|x \in A \wedge x \in B} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{intersection}}\\ &\subseteq A\end{aligned}\)

\(LHS = RHS\)

Hence, it is proved that \(\left( {A \cap B} \right) \subseteq A\).

02

(b) Showing that \(A \subseteq \left( {A \cup B} \right)\).

Solve the left hand side of set \(A \cup B\) as follows:

\(\begin{aligned}RHS &= A \cup B\\ &= \left\{ {x|x \in A \cup B} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{compliment}}\\ &= \left\{ {x|x \in A \vee x \in B} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{union}}\\ &\supseteq A\end{aligned}\)

\(LHS = RHS\)

Hence, it is proved that \(A \subseteq \left( {A \cup B} \right)\).

03

(c) Showing that \(\left( {A - B} \right) \subseteq A\).

Solve the left hand side of set \(A - B\) as follows:

\(\begin{aligned}LHS &= A - B\\ &= \left\{ {x|x \in A,x \notin B} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{difference}}\\ &\subseteq A\\ &= RHS\end{aligned}\)

Hence, it is proved that \(A - B \subseteq A\).

04

(d) Showing that \(A \cap \left( {B - A} \right) = \phi \).

Solve the left hand side of set \(A \cap \left( {B - A} \right)\) as follows:

\(\left( {B - A} \right) = \left\{ {x|x \in B,x \notin A} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\,{\rm{difference}}\)

\(\begin{aligned}LHS &= A \cap \left( {B - A} \right)\\ &= \left\{ {x|x \in A,x \in B,x \notin A} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\;{\rm{intersection}}\\ &= \left\{ {x = \phi |\phi \in A,\phi \in B,\phi \notin A} \right\}\;{\rm{by}}\;{\rm{empty set}}\\ &= \phi \end{aligned}\)

\(LHS = RHS\)

Hence, it is proved that \(A \cap \left( {B - A} \right) = \phi \).

05

(e) Showing that \(A \cup \left( {B - A} \right) = A \cup B\).

Solve the left hand side of set \(A \cap \left( {B - A} \right)\) as follows:

\(\left( {B - A} \right) = \left\{ {x|x \in B,x \notin A} \right\}\;{\rm{by}}\;{\rm{definition}}\;{\rm{of}}\,{\rm{difference}}\)

\(\begin{aligned}LHS &= A \cup \left( {B - A} \right)\\ &= A \cup \left( {B \cap \overline A } \right)\\ &= \left( {A \cup B} \right) \cap \left( {A \cup \overline A } \right)\end{aligned}\)

\(\begin{aligned}LHS &= \left( {A \cup B} \right) \cap \left( U \right)\\ &= \left( {A \cup B} \right)\\ &= RHS\end{aligned}\)

Where, we used the Distributive Law and the fact that \(\left( {A \cup \overline A } \right) = U\) which is the universal set.

Hence, it is proved that \(A \cup \left( {B - A} \right) = A \cup B\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free