Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the solution to each of these recurrence relations with the given initial conditions. Use an iterative approach such as that used in Example 10.

a)\({{\bf{a}}_{\bf{n}}} = - {{\bf{a}}_{{\bf{n}} - {\bf{1}}}}\),\({{\bf{a}}_{\bf{0}}} = {\bf{5}}\)

b)\({{\bf{a}}_{\bf{n}}} = {{\bf{a}}_{{\bf{n}} - {\bf{1}}}} + {\bf{3}}\),\({{\bf{a}}_{\bf{0}}} = {\bf{1}}\)

c)\({{\bf{a}}_{\bf{n}}} = {{\bf{a}}_{{\bf{n}} - {\bf{1}}}} - {\bf{n}}\),\({{\bf{a}}_{\bf{0}}} = {\bf{4}}\)

d)\({{\bf{a}}_{\bf{n}}} = {\bf{2}}{{\bf{a}}_{{\bf{n}} - {\bf{1}}}} - {\bf{3}}\),\({{\bf{a}}_{\bf{0}}} = - {\bf{1}}\)

e)\({{\bf{a}}_{\bf{n}}} = \left( {{\bf{n}} + {\bf{1}}} \right){{\bf{a}}_{{\bf{n}} - {\bf{1}}}}\),\({{\bf{a}}_{\bf{0}}} = {\bf{2}}\)

f )\({{\bf{a}}_{\bf{n}}} = {\bf{2n}}{{\bf{a}}_{{\bf{n}} - {\bf{1}}}}\),\({{\bf{a}}_{\bf{0}}} = {\bf{3}}\)

g)\({{\bf{a}}_{\bf{n}}} = - {{\bf{a}}_{{\bf{n}} - {\bf{1}}}} + {\bf{n}} - {\bf{1}}\),\({{\bf{a}}_{\bf{0}}} = {\bf{7}}\)

Short Answer

Expert verified

(a) Thesolution of the first recurrence relation is\(5{\left( { - 1} \right)^n}\).

(b) Thesolution of the second recurrence relation is\(3n + 1\).

(c) Thesolution of the second recurrence relation is\( - \frac{1}{2}{n^2} - \frac{1}{2}n + 4\).

(d) Thesolution of the second recurrence relation is\( - 4 \cdot {2^n} + 3\).

(e) Thesolution of the second recurrence relation is\(\left( {n + 1} \right)! \cdot 2\).

(f) Thesolution of the second recurrence relation is\(3n!{2^n}\).

(g) The solution of the second recurrence relation is\(7 \cdot {\left( { - 1} \right)^n} + \left( {{{\left( { - 1} \right)}^{n - i + {1_i}}}} \right)_{i = 0}^{n - 1}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Significance of the iterative approach

The iterative method is referred to as a mathematical procedure which mainly uses a particular initial value for generating a particular sequence. The iterative method is useful for finding the approximation of a particular sequence.

02

(a)  Step 2: Determination of the solution of the first recurrence relations

The given first equation is expressed as:

\({a_n} = - {a_{n - 1}}\)

The given second equation is expressed as:

\({a_0} = 5\)

The equation of the recurrence relation is expressed as:

\(\begin{array}{c} - {a_{n - 1}} = {\left( { - 1} \right)^1}{a_{n - 1}}\\\left( { - 1} \right){a^{n - 2}} = {\left( { - 1} \right)^2}{a_{n - 2}}\\{\left( { - 1} \right)^2}{a^{n - 3}} = {\left( { - 1} \right)^3}{a_{n - 3}}\\{\left( { - 1} \right)^3}{a^{n - 4}} = {\left( { - 1} \right)^4}{a_{n - 4}}\end{array}\)

Hence, further as:

\(\begin{array}{c}{a_n} = {\left( { - 1} \right)^n}{a_{n - n}}\\ = {\left( { - 1} \right)^n}{a_0}\\ = 5{\left( { - 1} \right)^n}\end{array}\)

Thus, the solution of the first recurrence relation is\(5{\left( { - 1} \right)^n}\).

03

(b) Step 3: Determination of the solution of the second recurrence relations

The given first equation is expressed as:

\({a_n} = {a_{n - 1}} + 3\)

The given second equation is expressed as:

\({a_0} = 1\)

The equation of the recurrence relation is expressed as:

\(\begin{array}{l}{a_{n - 1}} + 3 = {a_{n - 1}} + 3 \cdot 1\\{a_{n - 2}} + 6 = {a_{n - 2}} + 3 \cdot 2\\{a_{n - 3}} + 9 = {a_{n - 3}} + 3 \cdot 3\\{a_{n - 4}} + 12 = {a_{n - 4}} + 3 \cdot 4\end{array}\)

Hence, further as:

\(\begin{array}{c}{a_{n - 1}} + 3 = {a_{n - n}} + 3 \cdot n\\ = {a_0} + 3n\\ = 1 + 3n\end{array}\)

Thus, the solution of the second recurrence relation is\(3n + 1\).

04

(c) Step 4: Determination of the solution of the third recurrence relations

The given first equation is expressed as:

\({a_n} = {a_{n - 1}} - n\)

The given second equation is expressed as:

\({a_0} = 4\)

The equation of the recurrence relation is expressed as:

\(\begin{array}{l}{a_n} = {a_{n - 1}} - n\\ = {a_{n - 1}} - n + 0\\{a_{n - 2}} - \left( {n - 1} \right) - n = {a_{n - 2}} - 2n + 0 + 1\\{a_{n - 3}} - \left( {n - 2} \right) - 2n + 1 = {a_{n - 3}} - 3n + 0 + 1 + 2\\{a_{n - 4}} - \left( {n - 3} \right) - 3n + 3 = {a_{n - 4}} - 4n + 0 + 1 + 2 + 3\end{array}\)

Hence, further as:

\(\begin{array}{c}{a_{n - 1}} - n = {a_{n - n}} - nn + i_{i = 0}^{n - 1}\\ = {a_0} - {n^2} + \frac{{n\left( {n - 1} \right)}}{2}\\ = 4 - {n^2} + \frac{{{n^2} - n}}{2}\\ = - \frac{1}{2}{n^2} - \frac{1}{2}n + 4\end{array}\)

Thus, the solution of the second recurrence relation is\( - \frac{1}{2}{n^2} - \frac{1}{2}n + 4\).

05

(d)  Step 5: Determination of the solution of the fourth recurrence relations

The given first equation is expressed as:

\({a_n} = 2{a_{n - 1}} - 3\)

The given second equation is expressed as:

\({a_0} = - 1\)

The equation of the recurrence relation is expressed as:

\(\begin{array}{l}{a_n} = 2{a_{n - 1}} - 3\\ = {2^1}{a_{n - 1}} - 3\\2\left( {2{a_{n - 2}} - 3} \right) - 3 = {2^2}{a_{n - 2}} - \left( {3 \cdot {2^0} + 3 \cdot {2^1}} \right)\\{2^2}\left( {2{a_{n - 3}} - 3} \right) - \left( {3 \cdot {2^0} + 3 \cdot {2^1}} \right) = {2^3}{a_{n - 2}} - \left( {3 \cdot {2^0} + 3 \cdot {2^1} + 3 \cdot {2^2}} \right)\end{array}\)

Hence, further as:

\(\begin{array}{c}{2^3}\left( {2{a_{n - 4}} - 3} \right) - \left( {3 \cdot {2^0} + 3 \cdot {2^1} + 3 \cdot {2^2}} \right) = {2^4}{a_{n - 2}} - \left( {3 \cdot {2^0} + 3 \cdot {2^1} + 3 \cdot {2^2} + 3 \cdot {2^3}} \right)\\2{a_{n - 1}} - 3 = {2^n}\left( {{a_{n - n}}} \right) - \left( {3 \cdot {2^i}} \right)_{i = 0}^{n - 1}\\ = {2^n}\left( {{a_0}} \right) - 3 \cdot \left( {{2^i}} \right)_{i = 0}^{n - 1}\\ = {2^n}\left( { - 1} \right) - 3 \cdot \left( {\frac{{{2^n} - 1}}{{2 - 1}}} \right)\end{array}\)

Hence, further as:

\(\begin{array}{c}2{a_{n - 1}} - 3 = {2^n} - 3 \cdot \left( {{2^n} - 1} \right)\\ = - {2^n} - 3 \cdot {2^n} + 3\\ = - 4 \cdot {2^n} + 3\end{array}\)

Thus, the solution of the second recurrence relation is\( - 4 \cdot {2^n} + 3\).

06

(e)  Step 6: Determination of the solution of the fifth recurrence relations

The given first equation is expressed as:

\({a_n} = \left( {n + 1} \right){a_{n - 1}}\)

The given second equation is expressed as:

\({a_0} = 2\)

The equation of the recurrence relation is expressed as:

\(\begin{array}{c}{a_n} = \left( {n + 1} \right){a_{n - 1}}\\ = \left( {n + 1} \right)n{a_{n - 2}}\\ = n\left( {n + 1} \right)\left( {n - 1} \right){a_{n - 3}}\\ = \left( {n + 1} \right)n\left( {n - 1} \right)\left( {n - 2} \right){a_{n - 4}}\end{array}\)

Hence, further as:

\(\begin{array}{c}{a_n} = n\left( {n + 1} \right)\left( {n - 1} \right)\left( {n - 2} \right)...\left( 2 \right){a_{n - n}}\\ = \left( {n + 1} \right)!{a_0}\\ = \left( {n + 1} \right)! \cdot 2\end{array}\)

Hence, further as:

\(\begin{array}{c}2{a_{n - 1}} - 3 = {2^n} - 3 \cdot \left( {{2^n} - 1} \right)\\ = - {2^n} - 3 \cdot {2^n} + 3\\ = - 4 \cdot {2^n} + 3\end{array}\)

Thus, the solution of the second recurrence relation is\(\left( {n + 1} \right)! \cdot 2\).

07

(f) Step 7: Determination of the solution of the sixth recurrence relations

The given first equation is expressed as:

\({a_n} = 2n{a_{n - 1}}\)

The given second equation is expressed as:

\({a_0} = 3\)

The equation of the recurrence relation is expressed as:

\(\begin{array}{c}{a_n} = 2n{a_{n - 1}}\\ = {2^1}n{a_{n - 1}}\\2n\left( {2\left( {n - 1} \right){a_{n - 2}}} \right) = {2^2}n\left( {n - 1} \right){a_{n - 2}}\\{2^2}n\left( {n - 1} \right)\left( {2\left( {n - 2} \right){a_{n - 2}}} \right) = {2^3}n\left( {n - 1} \right)\left( {n - 2} \right){a_{n - 3}}\\{2^3}n\left( {n - 1} \right)\left( {n - 2} \right)\left( {2\left( {n - 3} \right){a_{n - 2}}} \right) = {2^4}n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right){a_{n - 4}}\end{array}\)

Hence, further as:

\(\begin{array}{c}2n{a_{n - 1}} = {2^n}n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)...\left( 1 \right){a_{n - n}}\\ = {2^n} \cdot n! \cdot {a_0}\\ = {2^n} \cdot n! \cdot 3\\ = 3n!{2^n}\end{array}\)

Thus, the solution of the second recurrence relation is\(3n!{2^n}\).

08

(g) Step 8: Determination of the solution of the seventh recurrence relations

The given first equation is expressed as:

\({a_n} = - {a_{n - 1}} + n - 1\)

The given second equation is expressed as:

\({a_0} = 7\)

The equation of the recurrence relation is expressed as:

\(\begin{array}{c} - {a_{n - 1}} + n - 1 = {\left( { - 1} \right)^1}{a_{n - 1}} + \left( {n - 1} \right)\\{\left( { - 1} \right)^1}\left( {{a_{n - 2}} + \left( {n - 1} \right) - 1} \right) + \left( {n - 1} \right) = {\left( { - 1} \right)^2}{a_{n - 2}} + \left( {\left( {n - 1} \right) - \left( {n - 2} \right)} \right)\\{\left( { - 1} \right)^2}\left( { - {a_{n - 3}} + \left( {n - 2} \right) - 1} \right) + \left( {n - 1} \right) - \left( {n - 2} \right) = {\left( { - 1} \right)^3}{a_{n - 3}} + \left( {\left( {n - 1} \right) - \left( {n - 2} \right) + \left( {n - 3} \right)} \right)\\{\left( { - 1} \right)^3}\left( { - {a_{n - 4}} + \left( {n - 3} \right) - 1} \right) + \left( {n - 1} \right) - \left( {n - 2} \right) + \left( {n - 3} \right) = {\left( { - 1} \right)^4}{a_{n - 4}} + \left( {\left( {n - 1} \right) - \left( {n - 2} \right) + \left( {n - 3} \right) - \left( {n - 4} \right)} \right)\end{array}\)

Hence, further as:

\(\begin{array}{c} - {a_{n - 1}} + n - 1 = {\left( { - 1} \right)^n}{a_{n - n}} + \left( {\left( {n - 1} \right) - \left( {n - 2} \right) + \left( {n - 3} \right) - \left( {n - 4} \right) + .... + 0} \right)\\ = {\left( { - 1} \right)^n}{a_0} + \left( {{{\left( { - 1} \right)}^{n - i + {1_i}}}} \right)_{i = 0}^{n - 1}\\ = 7 \cdot {\left( { - 1} \right)^n} + \left( {{{\left( { - 1} \right)}^{n - i + {1_i}}}} \right)_{i = 0}^{n - 1}\end{array}\)

Thus, the solution of the second recurrence relation is\(7 \cdot {\left( { - 1} \right)^n} + \left( {{{\left( { - 1} \right)}^{n - i + {1_i}}}} \right)_{i = 0}^{n - 1}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free