Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the sequence \(\left\{ {{{\bf{a}}_{\bf{n}}}} \right\}\) is a solution of the recurrence relation \({{\bf{a}}_{\bf{n}}} = {{\bf{a}}_{{\bf{n}} - {\bf{1}}}} + {\bf{2}}{{\bf{a}}_{{\bf{n}} - {\bf{2}}}} + {\bf{2n}} - {\bf{9}}\) if

a)\({{\bf{a}}_{\bf{n}}} = - {\bf{n}} + {\bf{2}}.\)

b)\({{\bf{a}}_{\bf{n}}} = {\bf{5}}{\left( { - {\bf{1}}} \right)^{\bf{n}}} - {\bf{n}} + {\bf{2}}.\)

c)\({{\bf{a}}_{\bf{n}}} = {\bf{3}}{\left( { - {\bf{1}}} \right)^{\bf{n}}} + {{\bf{2}}^{\bf{n}}} - {\bf{n}} + {\bf{2}}.\)

d) \({{\bf{a}}_{\bf{n}}} = {\bf{7}} \cdot {{\bf{2}}^{\bf{n}}} - {\bf{n}} + {\bf{2}}.\)

Short Answer

Expert verified

(a)Sequence\(\left\{ {{a_n}} \right\}\)is a solution of the recurrence relation if\({a_n} = - n + 2\).

(b)Sequence\(\left\{ {{a_n}} \right\}\)is a solution of the recurrence relation if\({a_n} = 5{\left( { - 1} \right)^n} - n + 2\).

(c)Sequence\(\left\{ {{a_n}} \right\}\)is a solution of the recurrence relation if\({a_n} = 3{\left( { - 1} \right)^n} + {2^n} - n + 2\).

(d) Sequence\(\left\{ {{a_n}} \right\}\) is a solution of the recurrence relation if\({a_n} = 7 \cdot {\left( 2 \right)^n} - n + 2\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Significance of the sequence

The sequence is described as an enumerated objects collection which allows the repetition to occur in an orderly manner. Like a particular set, it also contains members or the elements.

02

(a) Step 2: Determination of the first solution

The given function is expressed as:

\({a_n} = - n + 2\) …(i)

Here,\({a_n}\)is sequence of the numbers.

The given relation is expressed as:

\({a_n} = {a_{n - 1}} + 2{a_{n - 2}} + 2n - 9\) …(ii)

From the equation (i), the equation of\({a_{n - 1}}\)can be expressed as:

\(\begin{array}{c}{a_{n - 1}} = - \left( {n - 1} \right) + 2\\ = - n + 3\end{array}\)

From the equation (i), the equation of\({a_{n - 2}}\)can be expressed as:

\(\begin{array}{c}{a_{n - 2}} = - \left( {n - 2} \right) + 2\\ = - n + 4\end{array}\)

Substitute\( - n + 3\)for\({a_{n - 1}}\)and\( - n + 4\)for\({a_{n - 2}}\)in the equation (ii).

\(\begin{array}{c}{a_n} = - n + 3 - 2n + 8 + 2n - 9\\ = - n + 2\end{array}\)

Thus, sequence \(\left\{ {{a_n}} \right\}\) is a solution of the recurrence relation if \({a_n} = - n + 2\).

03

(b)  Step 3: Determination of the second solution

The given function is expressed as:

\({a_n} = 5{\left( { - 1} \right)^n} - n + 2\) …(iii)

Here,\({a_n}\)is sequence of the numbers.

The given relation is expressed as:

\({a_n} = {a_{n - 1}} + 2{a_{n - 2}} + 2n - 9\) …(ii)

From the equation (iii), the equation of\({a_{n - 1}}\)can be expressed as:

\(\begin{array}{c}{a_{n - 1}} = 5{\left( { - 1} \right)^{n - 1}} - \left( {n - 1} \right) + 2\\ = - 5{\left( { - 1} \right)^n} - n + 3\end{array}\)

From the equation (i), the equation of\({a_{n - 2}}\)can be expressed as:

\(\begin{array}{c}{a_{n - 2}} = 5{\left( { - 1} \right)^{n - 2}} - \left( {n - 1} \right) + 2\\ = 5{\left( { - 1} \right)^n} - n + 4\end{array}\)

Substitute\( - 5{\left( { - 1} \right)^n} - n + 3\)for\({a_{n - 1}}\)and\(5{\left( { - 1} \right)^n} - n + 4\)for\({a_{n - 2}}\)in the equation (ii).

\(\begin{array}{c}{a_n} = - 5{\left( { - 1} \right)^n} - n + 3 + 2 \cdot 5{\left( { - 1} \right)^n} - 2n + 8 + 2n - 9\\ = 5{\left( { - 1} \right)^n} - n + 2\end{array}\)

Thus, sequence \(\left\{ {{a_n}} \right\}\) is a solution of the recurrence relation if\({a_n} = 5{\left( { - 1} \right)^n} - n + 2\).

04

(c) Step 4: Determination of the third solution

The given function is expressed as:

\({a_n} = 3{\left( { - 1} \right)^n} + {2^n} - n + 2\) …(iv)

Here,\({a_n}\)is sequence of the numbers.

The given relation is expressed as:

\({a_n} = {a_{n - 1}} + 2{a_{n - 2}} + 2n - 9\) …(ii)

From the equation (iii), the equation of\({a_{n - 1}}\)can be expressed as:

\(\begin{array}{c}{a_{n - 1}} = 3{\left( { - 1} \right)^{n - 1}} + {\left( 2 \right)^{n - 1}} - \left( {n - 1} \right) + 2\\ = - 3{\left( { - 1} \right)^n} + {\left( 2 \right)^{n - 1}} - n + 3\end{array}\)

From the equation (i), the equation of\({a_{n - 2}}\)can be expressed as:

\(\begin{array}{c}{a_{n - 2}} = 3{\left( { - 1} \right)^{n - 2}} + {\left( 2 \right)^{n - 2}} - \left( {n - 2} \right) + 2\\ = 3{\left( { - 1} \right)^n} + {\left( 2 \right)^{n - 2}} - n + 4\end{array}\)

Substitute\( - 3{\left( { - 1} \right)^n} + {\left( 2 \right)^{n - 1}} - n + 3\)for\({a_{n - 1}}\)and\(3{\left( { - 1} \right)^n} + {\left( 2 \right)^{n - 2}} - n + 4\)for\({a_{n - 2}}\)in the equation (ii).

\(\begin{array}{c}{a_n} = - 3{\left( { - 1} \right)^n} + {\left( 2 \right)^{n - 1}} - n + 3 + 2 \cdot 3{\left( { - 1} \right)^n} + {\left( 2 \right)^{1 + n - 2}} - 2n + 8 + 2n - 9\\ = 3{\left( { - 1} \right)^n} + {2^n} - n + 2\end{array}\)

Thus, sequence \(\left\{ {{a_n}} \right\}\) is a solution of the recurrence relation if\({a_n} = 3{\left( { - 1} \right)^n} + {2^n} - n + 2\).

05

(d) Step 5: Determination of the fourth solution

The given function is expressed as:

\({a_n} = 7 \cdot {\left( 2 \right)^n} - n + 2\) …(v)

Here,\({a_n}\)is sequence of the numbers.

The given relation is expressed as:

\({a_n} = {a_{n - 1}} + 2{a_{n - 2}} + 2n - 9\) …(ii)

From the equation (iii), the equation of\({a_{n - 1}}\)can be expressed as:

\(\begin{array}{c}{a_{n - 1}} = 7 \cdot {\left( 2 \right)^{n - 1}} - n - 1 + 2\\ = 7 \cdot {\left( 2 \right)^{n - 1}} - n + 3\end{array}\)

From the equation (i), the equation of\({a_{n - 2}}\)can be expressed as:

\(\begin{array}{c}{a_{n - 2}} = 7 \cdot {\left( 2 \right)^{n - 2}} - n - 2 + 2\\ = 7 \cdot {\left( 2 \right)^{n - 2}} - n + 4\end{array}\)

Substitute\(7 \cdot {\left( 2 \right)^{n - 1}} - n + 3\)for\({a_{n - 1}}\)and\(7 \cdot {\left( 2 \right)^{n - 2}} - n + 4\)for\({a_{n - 2}}\)in the equation (ii).

\(\begin{array}{c}{a_n} = 7 \cdot {\left( 2 \right)^{n - 1}} - n + 3 + 2 \cdot 7 \cdot {\left( 2 \right)^{n - 2}} - 2n + 8 + 2n - 9\\ = 7 \cdot {\left( 2 \right)^n} - n + 2\end{array}\)

Thus, sequence \(\left\{ {{a_n}} \right\}\) is a solution of the recurrence relation if\({a_n} = 7 \cdot {\left( 2 \right)^n} - n + 2\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free