Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Is the sequence\(\left\{ {{a_n}} \right\}\)is a solution of the recurrence relation \({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\)if

a) \({a_n} = 0\) b) \({a_n} = 1\)

c) \({a_n} = {2^n}\) d) \({a_n} = {4^n}\)

e)\({a_n} = n{4^n}\) f)\({a_n} = 2 \cdot {4^n} + 3n{4^n}\)

g)\({a_n} = {( - 4)^n}\) h)\({a_n} = {n^2}{4^n}\)

Short Answer

Expert verified
  1. Yes
  2. No
  3. No
  4. Yes
  5. Yes
  6. Yes
  7. No
  8. No

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1

A recurrence relation for the sequence\(\left\{ {{a_n}} \right\}\)is an equation that expresses\({a_n}\)in terms of one or more of the previous terms of the sequence, namely,\({a_0},{a_1},......,{a_{n - 1}}\), for all integers\(n\)with\(n \ge {n_0}\), where\({n_0}\)is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

02

Step 2

a. Given

\(\begin{array}{l}{a_n} = 0\\n = 0,1,2,...\end{array}\)

To prove: \({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}},n \ge 2\)

Replace\(n\) in \({a_n} = 0\)by \(n - 1\):

\({a_{n - 1}} = 0\)

Replace\(n\) in \({a_n} = 0\)by \(n - 2\):

\({a_{n - 2}} = 0\)

We will start from the expression \({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\)and prove that this term has to be equal to \({a_n}\)(when \(n \ge 2\)). Let us use the two previous expressions derived for \({a_{n - 1}}\)and \({a_{n - 2}}\)

\(8{a_{n - 1}} - 16{a_{n - 2}} = 8(0) - 16(0) = 0 + 0 = 0 = {a_n}\)

03

Step 3

b. Given

\(\begin{array}{l}{a_n} = 1\\n = 0,1,2,...\end{array}\)

To prove: \({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\)does not hold, \(n \ge 2\)

Replace\(n\) in \({a_n} = 1\)by\(n - 1\):

\({a_{n - 1}} = 1\)

Replace\(n\) in \({a_n} = 1\)by \(n - 2\):

\({a_{n - 2}} = 1\)

We will start from the expression \({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\)and prove that this term is not equal to \({a_n}\)(when \(n \ge 2\)). Let us use the two previous expressions derived for \({a_{n - 1}}\)and \({a_{n - 2}}\)

\(8{a_{n - 1}} - 16{a_{n - 2}} = 8(1) - 16(1) = 8 - 16 = - 8 \ne {a_n}\)

since\({a_n} \ne - 8\), the recurrence relation\({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\)does not hold

04

Step 4

c. given

\(\begin{array}{l}{a_n} = {2^n}\\n = 0,1,2,...\end{array}\)

To prove: the recurrence relation\({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\)does not hold\(n \ge 2\)

Replace\(n\) in \({a_n} = {2^n}\)by \(n - 1\):

\({a_{n - 1}} = {2^{n - 1}}\)

Replace\(n\) in \({a_n} = {2^n}\)by \(n - 2\):

\({a_{n - 2}} = {2^{n - 2}}\)

We will start from the expression \(8{a_{n - 1}} - 16{a_{n - 2}}\)and prove that this term is not equal to (when ). Let us use the two previous expressions derived for and \({a_n}\)

\(\begin{array}{c}8{a_{n - 1}} - 16{a_{n - 2}} = 8 \cdot {2^{n - 1}} - 16 \cdot {2^{n - 2}}\\ = 8 \cdot 2 \cdot {2^{n - 2}} - 16 \cdot {2^{n - 2}}\\ = {2^{n - 2}}(2 \cdot 8 - 16)\\ = {2^{n - 2}}(0)\\ = 0\\ \ne {a_n}\end{array}\)
since\({a_n} \ne - 8\), the recurrence relation\({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\)does not hold

05

Step 5

d. given

\(\begin{array}{l}{a_n} = {4^n}\\n = 0,1,2,...\end{array}\)

To prove:\({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\), \(n \ge 2\)

Replace\(n\) in \({a_n} = {4^n}\)by \(n - 1\):

\({a_{n - 1}} = {4^{n - 1}}\)

Replace\(n\) in \({a_n} = {4^n}\)by \(n - 2\):

\({a_{n - 2}} = {4^{n - 2}}\)

We will start from the expression \(8{a_{n - 1}} - 16{a_{n - 2}}\)and prove that this term has to be equal to \({a_n}\)(when\(n \ge 2\)). Let us use the two previous expressions derived for \({a_{n - 1}}\)and \({a_{n - 2}}\)

\(\begin{array}{c}8{a_{n - 1}} - 16{a_{n - 2}} = 8 \cdot {4^{n - 1}} - 16 \cdot {4^{n - 2}}\\ = 8 \cdot 4 \cdot {4^{n - 2}} - 16 \cdot {4^{n - 2}}\\ = {4^{n - 2}}(8 \cdot 4 - 16)\\ = {4^{n - 2}}(16)\\ = {4^{n - 2}}({4^2})\\ = {4^n}\\ = {a_n}\end{array}\)

06

Step 6

e. given

\(\begin{array}{l}{a_n} = n{4^n}\\n = 0,1,2,...\end{array}\)

To prove:\({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\), \(n \ge 2\)

Replace\(n\) in \({a_n} = n{4^n}\)by\(n - 1\):

\({a_{n - 1}} = (n - 1){4^{n - 1}}\)

Replace\(n\) in \({a_n} = n{4^n}\)by\(n - 2\):

\({a_{n - 2}} = (n - 2){4^{n - 2}}\)

We will start from the expression \(8{a_{n - 1}} - 16{a_{n - 2}}\)and prove that this term has to be equal to \({a_n}\)(when\(n \ge 2\)). Let us use the two previous expressions derived for \({a_{n - 1}}\)and \({a_{n - 2}}\)

\(\begin{array}{c}8{a_{n - 1}} - 16{a_{n - 2}} = 8 \cdot (n - 1) \cdot {4^{n - 1}} - 16 \cdot (n - 2) \cdot {4^{n - 2}}\\ = 8 \cdot (n - 1) \cdot 4 \cdot {4^{n - 2}} - 16 \cdot (n - 2) \cdot {4^{n - 2}}\\ = {4^{n - 2}}(8 \cdot 4(n - 1)16 \cdot (n - 2))\\ = {4^{n - 2}}(32(n - 1) - 16(n - 2))\\ = {4^{n - 2}}(32n - 32 - 16n + 32)\\ = {4^n}(16n)\\ = n \cdot {4^{n - 2}}({4^2})\\ = n \cdot {4^n}\\ = {a_n}\end{array}\)

07

Step 7:

f. given

\(\begin{array}{l}{a_n} = 2 \cdot {4^n} + 3n{4^n}\\n = 0,1,2,...\end{array}\)

To prove:\({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\), \(n \ge 2\)

Replace\(n\) in \({a_n} = 2 \cdot {4^n} + 3n{4^n}\)by\(n - 1\):

\({a_{n - 1}} = 2 \cdot {4^{n - 1}} + 3(n - 1){4^{n - 1}}\)

Replace\(n\) in \({a_n} = 2 \cdot {4^n} + 3n{4^n}\)by\(n - 2\):

\({a_{n - 2}} = 2 \cdot {4^{n - 2}} + 3(n - 2){4^{n - 2}}\)

We will start from the expression \(8{a_{n - 1}} - 16{a_{n - 2}}\)and prove that this term has to be equal to \({a_n}\)(when\(n \ge 2\)). Let us use the two previous expressions derived for \({a_{n - 1}}\)and \({a_{n - 2}}\)

\(\begin{array}{c}8{a_{n - 1}} - 16{a_{n - 2}} = 8 \cdot (2 \cdot {4^{n - 1}} + 3(n - 1){4^{n - 1}}) - 16 \cdot (2 \cdot {4^{n - 2}} + 3(n - 2){4^{n - 2}})\\ = 16 \cdot {4^{n - 2}} - 24(n - 1){4^{n - 1}} - 32 \cdot {4^{n - 2}} - 48(n - 2){4^{n - 2}}\\ = 16 \cdot 4 \cdot {4^{n - 2}} + 24(n - 1) \cdot 4 \cdot {4^{n - 2}} - 32 \cdot {4^{n - 2}} - 48(n - 2){4^{n - 2}}\\ = {4^{n - 2}}(16 \cdot 4 + 24(n - 1) \cdot 4 - 32 - 48(n - 2))\\ = {4^{n - 2}}(64 + 96(n - 1) - 32 - 48(n - 2))\\ = {4^{n - 2}}(32 + 96n - 96 - 48n + 96)\\ = {4^{n - 2}}(42 + 48n)\\ = {4^{n - 2}} \cdot 16 \cdot (2 + 3n)\\ = {4^{n - 2}} \cdot {4^2} \cdot (2 + 3n)\\ = {4^n} \cdot (2 + 3n)\\ = 2 \cdot {4^n} + 3n \cdot {4^n}\\ = {a_n}\end{array}\)

08

Step 8:

g. given

\(\begin{array}{l}{a_n} = {( - 4)^n}\\n = 0,1,2,...\end{array}\)

To prove: the recurrence relation\({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\)does not hold\(n \ge 2\)

Replace\(n\) in \({a_n} = {( - 4)^n}\)by\(n - 1\):

\({a_{n - 1}} = {( - 4)^{n - 1}}\)

Replace\(n\) in \({a_n} = {( - 4)^n}\)by\(n - 2\):

\({a_{n - 2}} = {( - 4)^{n - 2}}\)

We will start from the expression \(8{a_{n - 1}} - 16{a_{n - 2}}\)and prove that this term is not equal to \({a_n}\)(when\(n \ge 2\)). Let us use the two previous expressions derived for \({a_{n - 1}}\)and \({a_{n - 2}}\)

\(\begin{array}{c}8{a_{n - 1}} - 16{a_{n - 2}} = 8 \cdot {( - 4)^{n - 1}} - 16 \cdot {( - 4)^{n - 2}}\\ = 8 \cdot ( - 4) \cdot {( - 4)^{n - 2}} - 16 \cdot {( - 4)^{n - 2}}\\ = {( - 4)^{n - 2}}(8 \cdot ( - 4) - 16)\\ = {( - 4)^{n - 2}}( - 32 - 16)\\ = {( - 4)^{n - 2}}( - 48)\\ = {( - 4)^{n - 2}} \cdot 16 \cdot ( - 3)\\ = {( - 4)^{n - 2}} \cdot {4^2} \cdot ( - 3)\\ = ( - 3) \cdot {( - 4)^n}\\ \ne {a_n}\end{array}\)

Since\({a_n} \ne ( - 3) \cdot {( - 4)^n}\), the recurrence relation\({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\)does not hold\(n \ge 2\)

09

Step 9:

h. given

\(\begin{array}{l}{a_n} = {n^2}{4^n}\\n = 0,1,2,...\end{array}\)

To prove: the recurrence relation\({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\)does not hold\(n \ge 2\)

Replace\(n\) in \({a_n} = {n^2}{4^n}\)by \(n - 1\):

\({a_{n - 1}} = {(n - 1)^2}{(4)^{n - 1}}\)

Replace\(n\) in \({a_n} = {n^2}{4^n}\)by \(n - 2\):

\({a_{n - 2}} = {(n - 2)^2}{(4)^{n - 2}}\)

We will start from the expression \(8{a_{n - 1}} - 16{a_{n - 2}}\)and prove that this term is not equal to \({a_n}\)(when \(n \ge 2\)). Let us use the two previous expressions derived for \({a_{n - 1}}\)and \({a_{n - 2}}\)

\(\begin{array}{c}8{a_{n - 1}} - 16{a_{n - 2}} = 8 \cdot {(n - 1)^2} \cdot {4^{n - 1}} - 16 \cdot {(n - 2)^2} \cdot {4^{n - 2}}\\ = 8 \cdot {(n - 1)^2} \cdot 4 \cdot {4^{n - 2}} - 16 \cdot {(n - 2)^2} \cdot {4^{n - 2}}\\ = {4^{n - 2}}((8 \cdot 4{(n - 1)^2} \cdot {4^{n - 2}} - 16 \cdot {(n - 2)^2})\\ = {4^{n - 2}}(32 \cdot {(n - 1)^2} - 16 \cdot {(n - 2)^2})\\ = {4^{n - 2}}(32 \cdot ({n^2} - 2n + 1) - 16 \cdot ({n^2} - 4n + 4)\\ = {4^{n - 2}} \cdot (32{n^2} - 64n + 32 - 16{n^2} + 64n - 64)\\ = {4^{n - 2}}(16{n^2} - 32)\\ = {4^{n - 2}} \cdot 16 \cdot ({n^2} - 2)\\ = {4^{n - 2}} \cdot {4^2} \cdot ({n^2} - 2)\\ = ({n^2} - 2){4^n}\\ \ne {a_n}\end{array}\)

Since\({a_n} \ne ({n^2} - 2){4^n}\), the recurrence relation\({a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\)does not hold.

Hence, proved

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free