Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Is the sequence\[\left\{ {{a_n}} \right\}\]is a solution of the recurrence relation \[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\]if

a) \[{a_n} = 0\] b) \[{a_n} = 1\]

c) \[{a_n} = {2^n}\] d) \[{a_n} = {4^n}\]

e)\[{a_n} = n{4^n}\] f)\[{a_n} = 2 \cdot {4^n} + 3n{4^n}\]

g)\[{a_n} = {( - 4)^n}\] h)\[{a_n} = {n^2}{4^n}\]

Short Answer

Expert verified
  1. Yes
  2. No
  3. No
  4. Yes
  5. Yes
  6. Yes
  7. No
  8. No

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1

A recurrence relation for the sequence\[\left\{ {{a_n}} \right\}\]is an equation that expresses\[{a_n}\]in terms of one or more of the previous terms of the sequence, namely,\[{a_0},{a_1},......,{a_{n - 1}}\], for all integers\[n\]with\[n \ge {n_0}\], where\[{n_0}\]is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

02

Step 2

  1. Given

\[\begin{array}{l}{a_n} = 0\\n = 0,1,2,...\end{array}\]

To prove: \[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}},n \ge 2\]

Replace\[n\] in \[{a_n} = 0\]by \[n - 1\]:

\[{a_{n - 1}} = 0\]

Replace\[n\] in \[{a_n} = 0\]by \[n - 2\]:

\[{a_{n - 2}} = 0\]

We will start from the expression \[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\]and prove that this term has to be equal to \[{a_n}\](when \[n \ge 2\]). Let us use the two previous expressions derived for \[{a_{n - 1}}\]and \[{a_{n - 2}}\]

\[8{a_{n - 1}} - 16{a_{n - 2}} = 8(0) - 16(0) = 0 + 0 = 0 = {a_n}\]

03

Step 3

  1. Given

\[\begin{array}{l}{a_n} = 1\\n = 0,1,2,...\end{array}\]

To prove: \[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\]does not hold, \[n \ge 2\]

Replace\[n\] in \[{a_n} = 1\]by\[n - 1\]:

\[{a_{n - 1}} = 1\]

Replace\[n\] in \[{a_n} = 1\]by \[n - 2\]:

\[{a_{n - 2}} = 1\]

We will start from the expression \[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\]and prove that this term is not equal to \[{a_n}\](when \[n \ge 2\]). Let us use the two previous expressions derived for \[{a_{n - 1}}\]and \[{a_{n - 2}}\]

\[8{a_{n - 1}} - 16{a_{n - 2}} = 8(1) - 16(1) = 8 - 16 = - 8 \ne {a_n}\]

since\[{a_n} \ne - 8\], the recurrence relation\[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\]does not hold

04

Step 4

  1. given

\[\begin{array}{l}{a_n} = {2^n}\\n = 0,1,2,...\end{array}\]

To prove: the recurrence relation\[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\]does not hold\[n \ge 2\]

Replace\[n\] in \[{a_n} = {2^n}\]by \[n - 1\]:

\[{a_{n - 1}} = {2^{n - 1}}\]

Replace\[n\] in \[{a_n} = {2^n}\]by \[n - 2\]:

\[{a_{n - 2}} = {2^{n - 2}}\]

We will start from the expression \[8{a_{n - 1}} - 16{a_{n - 2}}\]and prove that this term is not equal to \[{a_n}\](when \[n \ge 2\]). Let us use the two previous expressions derived for \[{a_{n - 1}}\]and \[{a_{n - 2}}\]

\[\begin{array}{c}8{a_{n - 1}} - 16{a_{n - 2}} = 8 \cdot {2^{n - 1}} - 16 \cdot {2^{n - 2}}\\ = 8 \cdot 2 \cdot {2^{n - 2}} - 16 \cdot {2^{n - 2}}\\ = {2^{n - 2}}(2 \cdot 8 - 16)\\ = {2^{n - 2}}(0)\\ = 0\\ \ne {a_n}\end{array}\]
since\[{a_n} \ne - 8\], the recurrence relation\[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\]does not hold

05

Step 5

  1. given

\[\begin{array}{l}{a_n} = {4^n}\\n = 0,1,2,...\end{array}\]

To prove:\[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\], \[n \ge 2\]

Replace\[n\] in \[{a_n} = {4^n}\]by \[n - 1\]:

\[{a_{n - 1}} = {4^{n - 1}}\]

Replace\[n\] in \[{a_n} = {4^n}\]by \[n - 2\]:

\[{a_{n - 2}} = {4^{n - 2}}\]

We will start from the expression \[8{a_{n - 1}} - 16{a_{n - 2}}\]and prove that this term has to be equal to \[{a_n}\](when\[n \ge 2\]). Let us use the two previous expressions derived for \[{a_{n - 1}}\]and \[{a_{n - 2}}\]

06

Step 6

\[\begin{array}{l}{a_n} = n{4^n}\\n = 0,1,2,...\end{array}\]

To prove:\[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\], \[n \ge 2\]

Replace\[n\] in \[{a_n} = n{4^n}\]by\[n - 1\]:

\[{a_{n - 1}} = (n - 1){4^{n - 1}}\]

Replace\[n\] in \[{a_n} = n{4^n}\]by\[n - 2\]:

\[{a_{n - 2}} = (n - 2){4^{n - 2}}\]

We will start from the expression \[8{a_{n - 1}} - 16{a_{n - 2}}\]and prove that this term has to be equal to \[{a_n}\](when\[n \ge 2\]). Let us use the two previous expressions derived for \[{a_{n - 1}}\]and \[{a_{n - 2}}\]

\[\begin{array}{c}8{a_{n - 1}} - 16{a_{n - 2}} = 8 \cdot (n - 1) \cdot {4^{n - 1}} - 16 \cdot (n - 2) \cdot {4^{n - 2}}\\ = 8 \cdot (n - 1) \cdot 4 \cdot {4^{n - 2}} - 16 \cdot (n - 2) \cdot {4^{n - 2}}\\ = {4^{n - 2}}(8 \cdot 4(n - 1)16 \cdot (n - 2))\\ = {4^{n - 2}}(32(n - 1) - 16(n - 2))\\ = {4^{n - 2}}(32n - 32 - 16n + 32)\\ = {4^n}(16n)\\ = n \cdot {4^{n - 2}}({4^2})\\ = n \cdot {4^n}\\ = {a_n}\end{array}\]

07

Step 7:

  1. given

\[\begin{array}{l}{a_n} = 2 \cdot {4^n} + 3n{4^n}\\n = 0,1,2,...\end{array}\]

To prove:\[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\], \[n \ge 2\]

Replace\[n\] in \[{a_n} = 2 \cdot {4^n} + 3n{4^n}\]by\[n - 1\]:

\[{a_{n - 1}} = 2 \cdot {4^{n - 1}} + 3(n - 1){4^{n - 1}}\]

Replace\[n\] in \[{a_n} = 2 \cdot {4^n} + 3n{4^n}\]by\[n - 2\]:

\[{a_{n - 2}} = 2 \cdot {4^{n - 2}} + 3(n - 2){4^{n - 2}}\]

We will start from the expression \[8{a_{n - 1}} - 16{a_{n - 2}}\]and prove that this term has to be equal to \[{a_n}\](when\[n \ge 2\]). Let us use the two previous expressions derived for \[{a_{n - 1}}\]and \[{a_{n - 2}}\]

\[\begin{array}{c}8{a_{n - 1}} - 16{a_{n - 2}} = 8 \cdot (2 \cdot {4^{n - 1}} + 3(n - 1){4^{n - 1}}) - 16 \cdot (2 \cdot {4^{n - 2}} + 3(n - 2){4^{n - 2}})\\ = 16 \cdot {4^{n - 2}} - 24(n - 1){4^{n - 1}} - 32 \cdot {4^{n - 2}} - 48(n - 2){4^{n - 2}}\\ = 16 \cdot 4 \cdot {4^{n - 2}} + 24(n - 1) \cdot 4 \cdot {4^{n - 2}} - 32 \cdot {4^{n - 2}} - 48(n - 2){4^{n - 2}}\\ = {4^{n - 2}}(16 \cdot 4 + 24(n - 1) \cdot 4 - 32 - 48(n - 2))\\ = {4^{n - 2}}(64 + 96(n - 1) - 32 - 48(n - 2))\\ = {4^{n - 2}}(32 + 96n - 96 - 48n + 96)\\ = {4^{n - 2}}(42 + 48n)\\ = {4^{n - 2}} \cdot 16 \cdot (2 + 3n)\\ = {4^{n - 2}} \cdot {4^2} \cdot (2 + 3n)\\ = {4^n} \cdot (2 + 3n)\\ = 2 \cdot {4^n} + 3n \cdot {4^n}\\ = {a_n}\end{array}\]

08

Step 8:

  1. given

\[\begin{array}{l}{a_n} = {( - 4)^n}\\n = 0,1,2,...\end{array}\]

To prove: the recurrence relation\[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\]does not hold\[n \ge 2\]

Replace\[n\] in \[{a_n} = {( - 4)^n}\]by\[n - 1\]:

\[{a_{n - 1}} = {( - 4)^{n - 1}}\]

Replace\[n\] in \[{a_n} = {( - 4)^n}\]by\[n - 2\]:

\[{a_{n - 2}} = {( - 4)^{n - 2}}\]

We will start from the expression \[8{a_{n - 1}} - 16{a_{n - 2}}\]and prove that this term is not equal to \[{a_n}\](when\[n \ge 2\]). Let us use the two previous expressions derived for \[{a_{n - 1}}\]and \[{a_{n - 2}}\]

\[\begin{array}{c}8{a_{n - 1}} - 16{a_{n - 2}} = 8 \cdot {( - 4)^{n - 1}} - 16 \cdot {( - 4)^{n - 2}}\\ = 8 \cdot ( - 4) \cdot {( - 4)^{n - 2}} - 16 \cdot {( - 4)^{n - 2}}\\ = {( - 4)^{n - 2}}(8 \cdot ( - 4) - 16)\\ = {( - 4)^{n - 2}}( - 32 - 16)\\ = {( - 4)^{n - 2}}( - 48)\\ = {( - 4)^{n - 2}} \cdot 16 \cdot ( - 3)\\ = {( - 4)^{n - 2}} \cdot {4^2} \cdot ( - 3)\\ = ( - 3) \cdot {( - 4)^n}\\ \ne {a_n}\end{array}\]

Since\[{a_n} \ne ( - 3) \cdot {( - 4)^n}\], the recurrence relation\[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\]does not hold\[n \ge 2\]

09

Step 9:

  1. given

\[\begin{array}{l}{a_n} = {n^2}{4^n}\\n = 0,1,2,...\end{array}\]

To prove: the recurrence relation\[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\]does not hold\[n \ge 2\]

Replace\[n\] in \[{a_n} = {n^2}{4^n}\]by \[n - 1\]:

\[{a_{n - 1}} = {(n - 1)^2}{(4)^{n - 1}}\]

Replace\[n\] in \[{a_n} = {n^2}{4^n}\]by \[n - 2\]:

\[{a_{n - 2}} = {(n - 2)^2}{(4)^{n - 2}}\]

We will start from the expression \[8{a_{n - 1}} - 16{a_{n - 2}}\]and prove that this term is not equal to \[{a_n}\](when \[n \ge 2\]). Let us use the two previous expressions derived for \[{a_{n - 1}}\]and \[{a_{n - 2}}\]

\[\begin{array}{c}8{a_{n - 1}} - 16{a_{n - 2}} = 8 \cdot {(n - 1)^2} \cdot {4^{n - 1}} - 16 \cdot {(n - 2)^2} \cdot {4^{n - 2}}\\ = 8 \cdot {(n - 1)^2} \cdot 4 \cdot {4^{n - 2}} - 16 \cdot {(n - 2)^2} \cdot {4^{n - 2}}\\ = {4^{n - 2}}((8 \cdot 4{(n - 1)^2} \cdot {4^{n - 2}} - 16 \cdot {(n - 2)^2})\\ = {4^{n - 2}}(32 \cdot {(n - 1)^2} - 16 \cdot {(n - 2)^2})\\ = {4^{n - 2}}(32 \cdot ({n^2} - 2n + 1) - 16 \cdot ({n^2} - 4n + 4)\\ = {4^{n - 2}} \cdot (32{n^2} - 64n + 32 - 16{n^2} + 64n - 64)\\ = {4^{n - 2}}(16{n^2} - 32)\\ = {4^{n - 2}} \cdot 16 \cdot ({n^2} - 2)\\ = {4^{n - 2}} \cdot {4^2} \cdot ({n^2} - 2)\\ = ({n^2} - 2){4^n}\\ \ne {a_n}\end{array}\]

Since\[{a_n} \ne ({n^2} - 2){4^n}\], the recurrence relation\[{a_n} = 8{a_{n - 1}} - 16{a_{n - 2}}\]does not hold.

Hence, proved

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free