Chapter 2: Q12E (page 168)
show that the sequence\(\left\{ {{a_n}} \right\}\)is a solution of the recurrence relation \({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)if
a) \({a_n} = 0\)
b) \({a_n} = 1\)
c) \({a_n} = {\left( { - 4} \right)^n}\)
d) \({a_n} = 2{( - 4)^n} + 3\)
Short Answer
Expert verified
- prove\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)by determining the exact value of\({a_n},{a_{n - 1}},{a_{n - 2}}\)and checking that they satisfy\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)
- prove\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)by determining the exact value of\({a_n},{a_{n - 1}},{a_{n - 2}}\)and checking that they satisfy\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)
- prove\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)by determining the exact value of\({a_n},{a_{n - 1}},{a_{n - 2}}\)and checking that they satisfy\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)
- prove\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)by determining the exact value of\({a_n},{a_{n - 1}},{a_{n - 2}}\)and checking that they satisfy\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)