Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

show that the sequence\(\left\{ {{a_n}} \right\}\)is a solution of the recurrence relation \({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)if

a) \({a_n} = 0\)

b) \({a_n} = 1\)

c) \({a_n} = {\left( { - 4} \right)^n}\)

d) \({a_n} = 2{( - 4)^n} + 3\)

Short Answer

Expert verified
  1. prove\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)by determining the exact value of\({a_n},{a_{n - 1}},{a_{n - 2}}\)and checking that they satisfy\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)
  2. prove\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)by determining the exact value of\({a_n},{a_{n - 1}},{a_{n - 2}}\)and checking that they satisfy\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)
  3. prove\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)by determining the exact value of\({a_n},{a_{n - 1}},{a_{n - 2}}\)and checking that they satisfy\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)
  4. prove\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)by determining the exact value of\({a_n},{a_{n - 1}},{a_{n - 2}}\)and checking that they satisfy\({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1

A recurrence relation for the sequence\(\left\{ {{a_n}} \right\}\)is an equation that expresses\({a_n}\)in terms of one or more of the previous terms of the sequence, namely, \({a_0},{a_1},......,{a_{n - 1}}\), for all integers\(n\)with\(n \ge {n_0}\), where\({n_0}\)is a nonnegative integer. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

02

Step 2

  1. Given

\(\begin{aligned}{l}{a_n} = 0\\n = 0,1,2,...\end{aligned}\)

To prove: \({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}n \ge 2\)

Replace\(n\) in \({a_n} = 0\)by \(n - 1\):

\({a_{n - 1}} = 0\)

Replace\(n\) in \({a_n} = 0\)by \(n - 2\):

\({a_{n - 2}} = 0\)

We will start from the expression \( - 3{a_{n - 1}} + 4{a_{n - 2}}\)and prove that this term has to be equal to \({a_n}\)(when \(n \ge 2\)). Let us use the two previous expressions derived for \({a_{n - 1}}\)and \({a_{n - 2}}\)

\( - 3{a_{n - 1}} + 4{a_{n - 2}} = - 3(0) + 4(0) = 0 + 0 = 0 = {a_n}\)

03

Step 3

  1. Given

\(\begin{aligned}{l}{a_n} = 1\\n = 0,1,2,...\end{aligned}\)

To prove: \({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}},n \ge 2\)

Replace\(n\) in \({a_n} = 1\)by \(n - 1\):

\({a_{n - 1}} = 1\)

Replace\(n\) in \({a_n} = 1\)by \(n - 2\):

\({a_{n - 2}} = 1\)

We will start from the expression \( - 3{a_{n - 1}} + 4{a_{n - 2}}\)and prove that this term has to be equal to \({a_n}\)(when \(n \ge 2\)). Let us use the two previous expressions derived for \({a_{n - 1}}\)and \({a_{n - 2}}\)

\( - 3{a_{n - 1}} + 4{a_{n - 2}} = - 3(1) + 4(1) = 3 + 4 = 1 = {a_n}\)

04

Step 4

  1. given

\(\begin{aligned}{l}{a_n} = {( - 4)^n}\\n = 0,1,2,...\end{aligned}\)

To prove: \({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}n \ge 2\)

Replace\(n\) in \({a_n} = {( - 4)^n}\)by \(n - 1\):

\({a_{n - 1}} = {( - 4)^{n - 1}}\)

Replace\(n\) in \({a_n} = {( - 4)^n}\)by \(n - 2\):

\({a_{n - 2}} = {( - 4)^{n - 2}}\)

We will start from the expression \( - 3{a_{n - 1}} + 4{a_{n - 2}}\)and prove that this term has to be equal to \({a_n}\)(when \(n \ge 2\)). Let us use the two previous expressions derived for \({a_{n - 1}}\)and \({a_{n - 2}}\)

\(\begin{aligned}{c} - 3{a_{n - 1}} + 4{a_{n - 2}} = - 3{( - 4)^{n - 1}} + 4{( - 4)^{n - 2}}\\ = - 3 \cdot ( - 4) \cdot {( - 4)^{n - 2}} + 4{( - 4)^{n - 2}}\end{aligned}\)

Let us factor out\({( - 4)^{n - 2}}\):

\(\begin{aligned}{l} = {( - 4)^{n - 2}}(12 + 4)\\ = {( - 4)^{n - 2}}(16)\\ = {( - 4)^{n - 2}}{( - 4)^2}\\ = {( - 4)^n}\\ = {a_n}\end{aligned}\)

05

Step 5

  1. Given

\(\begin{aligned}{l}{a_n} = 2{( - 4)^n} + 3\\n = 0,1,2,...\end{aligned}\)

To prove: \({a_n} = - 3{a_{n - 1}} + 4{a_{n - 2}}n \ge 2\)

Replace\(n\) in \({a_n} = 2{( - 4)^n} + 3\)by \(n - 1\):

\({a_{n - 1}} = {( - 4)^{n - 1}}\)

Replace\(n\) in \({a_n} = 2{( - 4)^n} + 3\)by \(n - 2\):

\({a_{n - 2}} = {( - 4)^{n - 2}}\)

We will start from the expression \( - 3{a_{n - 1}} + 4{a_{n - 2}}\)and prove that this term has to be equal to \({a_n}\)(when \(n \ge 2\)). Let us use the two previous expressions derived for \({a_{n - 1}}\)and \({a_{n - 2}}\)

\(\begin{aligned}{c} - 3{a_{n - 1}} + 4{a_{n - 2}} = - 3(2{( - 4)^{n - 1}} + 3) + 4(2{( - 4)^{n - 2}} + 3)\\ = - 6{( - 4)^{n - 1}} - 9 + 8{( - 4)^{n - 2}} + 12\end{aligned}\)

Group the powers of\( - 4\)

\(\begin{aligned}{l} = ( - 6{( - 4)^{n - 1}} + 8{( - 4)^{n - 2}}) - 9 + 12\\ = ( - 6 \cdot ( - 4) \cdot {( - 4)^{n - 2}} + 8{( - 4)^{n - 2}}) + 3\end{aligned}\)

Let us factor out\({( - 4)^{n - 2}}\):

\(\begin{aligned}{l} = {( - 4)^{n - 2}}( - 6 \cdot ( - 4) + 8) + 3\\ = {( - 4)^{n - 2}}(24 + 8) + 3\\ = {( - 4)^{n - 2}} \cdot 16 \cdot 2 + 3\\ = {( - 4)^{n - 2}} \cdot {( - 4)^2} \cdot 2 + 3\\ = {( - 4)^n} \cdot 2 + 3\\ = 2{( - 4)^n} + 3\\ = {a_n}\end{aligned}\)

Hence, proved

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free