Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine whether these statements are true or false.

a) \(\emptyset \in \left\{ \emptyset \right\}\)

b) \(\emptyset \in \left\{ {\emptyset ,\;\left\{ \emptyset \right\}} \right\}\)

c) \(\left\{ \emptyset \right\} \in \left\{ \emptyset \right\}\)

d) \(\left\{ \emptyset \right\} \in \left\{ {\left\{ \emptyset \right\}} \right\}\)

e) \(\left\{ \emptyset \right\} \in \left\{ {\emptyset ,\;\left\{ \emptyset \right\}} \right\}\)

f) \(\left\{ {\left\{ \emptyset \right\}} \right\} \subset \left\{ {\emptyset ,\;\left\{ \emptyset \right\}} \right\}\)

g) \(\left\{ {\left\{ \emptyset \right\}} \right\} \subset \left\{ {\left\{ \emptyset \right\},\;\left\{ \emptyset \right\}} \right\}\)

Short Answer

Expert verified

(a) True

(b) True

(c) False

(d) True

(e) True

(f) True

(g) False

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definitions of \(\emptyset \), and Subset

The symbol \(\emptyset \) represents the empty set and the empty set does not contain any elements.

Xis a subset of Y if every element of X is also an element of Y. It is represented as \(X \subset Y\).

02

Determine whether the statement \(\emptyset  \in \left\{ \emptyset  \right\}\) is true or false (a)

Consider the given statement.

\(\emptyset \in \left\{ \emptyset \right\}\)

The \(\left\{ \emptyset \right\}\) represent the set containing only the empty set and thus, the empty set is an element of \(\left\{ \emptyset \right\}\).

Hence, the given statement is true.

03

Determine whether the statement \(\emptyset  \in \left\{ {\emptyset ,\;\left\{ \emptyset   \right\}} \right\}\) is true or false (b)

Consider the given statement.

\(\emptyset \in \left\{ {\emptyset ,\;\left\{ \emptyset \right\}} \right\}\)

The meaning of the given statement is that the empty set is an element of the set containing the element of \(\emptyset \) and the subset of \(\left\{ \emptyset \right\}\).

It can be observed that \(\emptyset \) is an element of the set \(\left\{ {\emptyset ,\;\left\{ \emptyset \right\}} \right\}\).

Therefore, the given statement is true.

04

Determine whether the statement \(\left\{ \emptyset   \right\} \in \left\{ \emptyset   \right\}\) is true or false (c)

Consider the given statement.

\(\left\{ \emptyset \right\} \in \left\{ \emptyset \right\}\)

The meaning of the given statement is that the set \(\left\{ \emptyset \right\}\) is an element of the set containing the empty set.

The set containing the empty set does not contain any set which contain elements. The set containing the empty set is a set which contains elements.

Therefore, the given statement is false.

05

Determine whether the statement \(\left\{ \emptyset  \right\} \in \left\{ {\left\{ \emptyset  \right\}} \right\}\) is true or false(d)

Consider the given statement.

\(\left\{ \emptyset \right\} \in \left\{ {\left\{ \emptyset \right\}} \right\}\)

The meaning of the given statement is that the set \(\left\{ \emptyset \right\}\) is an element of the set containing the set \(\left\{ \emptyset \right\}\).

Since \(\left\{ \emptyset \right\}\) is the only set contained in the set \(\left\{ {\left\{ \emptyset \right\}} \right\}\).

Therefore, the given statement is true.

06

Determine whether the statement \(\left\{ \emptyset   \right\} \in \left\{ {\emptyset ,\;\left\{ \emptyset  \right\}} \right\}\) is true or false (e)

Consider the given statement.

\(\left\{ \emptyset \right\} \in \left\{ {\emptyset ,\left\{ \emptyset \right\}} \right\}\)

The meaning of the given statement is that the set \(\left\{ \emptyset \right\}\) is a subset of the set containing element \(\emptyset \) and set \(\left\{ \emptyset \right\}\).

The set \(\left\{ \emptyset \right\}\) contains only the element \(\emptyset \). Since, \(\emptyset \) is also an element in \(\left\{ {\emptyset ,\;\left\{ \emptyset \right\}} \right\}\).

Therefore, the given statement is true.

07

Determine whether the statement \(\left\{ {\left\{ \emptyset   \right\}} \right\} \subset \left\{ {\emptyset ,\;\left\{ \emptyset  \right\}} \right\}\) is true or false (f)

Consider the given statement.

\(\left\{ {\left\{ \emptyset \right\}} \right\} \subset \left\{ {\emptyset ,\;\left\{ \emptyset \right\}} \right\}\)

The meaning of the given statement is that the set \(\left\{ {\left\{ \emptyset \right\}} \right\}\) is a subset of the set containing elements \(\emptyset \) and \(\left\{ \emptyset \right\}\).

The set \(\left\{ {\left\{ \emptyset \right\}} \right\}\) contains only the element \(\left\{ \emptyset \right\}\). Since, \(\left\{ \emptyset \right\}\) is also an element in \(\left\{ {\emptyset ,\;\left\{ \emptyset \right\}} \right\}\).

Therefore, the given statement is true.

08

Determine whether the statement \(\left\{ {\left\{ \emptyset   \right\}} \right\} \subset \left\{ {\left\{ \emptyset  \right\},\;\left\{ \emptyset  \right\}} \right\}\) is true or false (g)

Consider the given statement.

\(\left\{ {\left\{ \emptyset \right\}} \right\} \subset \left\{ {\left\{ \emptyset \right\},\;\left\{ \emptyset \right\}} \right\}\)

The meaning of the given statement is that the set \(\left\{ {\left\{ \emptyset \right\}} \right\}\) is a subset of the set containing the element \(\left\{ \emptyset \right\}\).

The set \(\left\{ {\left\{ \emptyset \right\}} \right\}\) contains only the element \(\left\{ \emptyset \right\}\) and since \(\left\{ {\left\{ \emptyset \right\},\;\left\{ \emptyset \right\}} \right\}\) contains only the element \(\left\{ \emptyset \right\}\) as well, the two sets are the same set.

Therefore, the given statement is true.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free