Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Q41SE

Page 187

Let A be an×n matrix and let 0 be then×n matrix all of whose entries are zero. Show that the following are true.

a)A0=0A=0

b)A0=0A=A

c)A0=0A=0

Q42E

Page 154

Let f be the function from R to R defined by f(x)=x2. Find

localid="1668675673668" (a)f-1(1)(b)f-1(x|0<x<1)(c)f-1(x|x>4)

Q42E

Page 137

If \(A,B,C,\)and \(D\)are sets, does it follow that \((A \oplus B) \oplus (C \oplus D) = (A \oplus C) \oplus (B \oplus D)\)?

Q42E

Page 154

Let f be the function from R to R defined by\(f(x) = {x^2}\). Find

\(\begin{array}{l}(a){f^{ - 1}}(\{ 1\} )\\(b){f^{ - 1}}(\{ x|0 < x < 1\} )\\(c){f^{ - 1}}(\{ x|x > 4\} )\end{array}\)

Q42E

Page 126

Translate each of these quantifications into English and determine its truth value.

(a) \(\exists x \in {\bf{B}}\left( {{x^3} = - 1} \right)\)

(b) \(\exists x \in {\bf{z}}\left( {x + 1 > x} \right)\)

(c) \(\forall x \in {\bf{z}}\left( {x - 1 \in {\bf{z}}} \right)\)

(d) \(\forall x \in {\bf{z}}\left( {{x^2} \in {\bf{z}}} \right)\)

Q43E

Page 154

Show g(x)=|x|. Find

(a)g1({0})(b)g1({1,0,1})(c)g1({x0<x<1})

Q43E

Page 137

If,\(A,\;B,\;C,\)and\(D\)are sets, does it follow that\((A \oplus B) \oplus (C \oplus D) = (A \oplus D) \oplus (B \oplus C)\)?

Q43E

Page 170

What are the values of the following products?

a)i=010ib)i=510ic)i=1100(-1)i d)i=1102

Q43E

Page 154

Show \(g(x) = |x|\). Find

\(\begin{array}{l}(a){g^{ - 1}}(\{ 0\} )\\(b){g^{ - 1}}(\{ - 1,0,1\} )\\(c){g^{ - 1}}(\{ x|0 < x < 1\} )\end{array}\)

Q43E

Page 126

Find the truth set of each of these predicates where the domain is the set of integers.

(a) \(P\left( x \right):{x^2} < 3\)

(b) \(Q\left( x \right):{x^2} > x\)

(c) \(R\left( x \right):2x + 1 = 0\)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks