Chapter 3: Q8E (page 216)
Find the least integer\(n\)such that\(f(x)\)is\(O({x^n})\)for each of these functions.
a)\(\;f(x) = 2{x^2} + {x^3}\log x\)
b)\(f(x) = 3{x^5} + {(\log x)^4}\)
c)\(f(x) = ({x^4} + {x^2} + 1)/({x^4} + 1)\)
d) \(f(x) = ({x^3} + 5\log x)/({x^4} + 1)\)
Short Answer
a)\(n = 4\)
b)\(n = 5\)
c)\(n = 0\)
d) \(n = - 1\)