Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(Requires calculus) For each of these pairs of functions, determine whether f and g are asymptotic

  1. f(x)=log(x2+1),g(x)=logx
  2. f(x)=2x+3,g(x)=2x+7
  3. f(x)=22x,g(x)=2x2
  4. f(x)=2x2+x+1,g(x)=2x2+2x

Short Answer

Expert verified

Iflimxf(x)g(x)=1, then f and g are said to be asymptotic.

If limxf(x)g(x)1including limit does not exist, then f and g are said to be not asymptotic.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Subpart (a): f(x)=log⁡(x2+1),g(x)=log⁡xStep 1: Calculating the Asymptotic condition:

Given,

f(x)=logx2+1g(x)=logx

Then,

limxf(x)g(x)=limxlogx2+1logx=limxlog1+1x2+logx2logx=limxlog1+1x2logx+logx2logx=limxlog1+1x2logx+limx2logxlogx

02

Applying limit x→∞:

Since1=0,

limxf(x)g(x)=0+2=2

Therefore, limxf(x)g(x)1so, f and g are not asymptotic.

03

Subpart (b): f(x)=2x+3,g(x)=2x+7Step 1: Calculating the Asymptotic condition:

Given,

f(x)=2x+3g(x)=2x+7

Then,

limxf(x)g(x)=limx2x+32x+7aman=amn=limx2x+3x7=limx24

04

Applying limit x→∞:

Since1=0,

limxf(x)g(x)=124=116

Thus, limxf(x)g(x)1so, f and g are not asymptotic.

05

Subpart (c): f(x)=22x,g(x)=2x2Step 1: Calculating the Asymptotic condition:

Given,

f(x)=22x,g(x)=2x2

Then,

limxf(x)g(x)=limx22x2x2aman=amn=limx22xx2

06

Applying limit x→∞:

Since1=0 anda=

data-custom-editor="chemistry" limxf(x)g(x)=2=

Thus, data-custom-editor="chemistry" limxf(x)g(x)1so, f and g are not asymptotic.

07

Subpart (d): f(x)=2x2+x+1,g(x)=2x2+2xStep 1: Calculating the Asymptotic condition:

Given,

f(x)=2x2+x+1g(x)=2x2+2x

Then,

limxf(x)g(x)=limx2x2+x+12x2+2xaman=amn=limx2x2+x+1x22x=limx21xlimxf(x)g(x)=limx21xxx2

08

Applying limit x→∞:

Since 1=0,

limxf(x)g(x)=20=1

Thus,limxf(x)g(x)1so, f and g are asymptotic.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free