Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(Requires calculus) For each of these pairs of functions, determine whether f and g are asymptotic

  1. f(x)=log(x2+1),g(x)=logx
  2. f(x)=2x+3,g(x)=2x+7
  3. f(x)=22x,g(x)=2x2
  4. f(x)=2x2+x+1,g(x)=2x2+2x

Short Answer

Expert verified

Iflimxf(x)g(x)=1, then f and g are said to be asymptotic.

If limxf(x)g(x)1including limit does not exist, then f and g are said to be not asymptotic.

Step by step solution

01

Subpart (a): f(x)=log⁡(x2+1),g(x)=log⁡xStep 1: Calculating the Asymptotic condition:

Given,

f(x)=logx2+1g(x)=logx

Then,

limxf(x)g(x)=limxlogx2+1logx=limxlog1+1x2+logx2logx=limxlog1+1x2logx+logx2logx=limxlog1+1x2logx+limx2logxlogx

02

Applying limit x→∞:

Since1=0,

limxf(x)g(x)=0+2=2

Therefore, limxf(x)g(x)1so, f and g are not asymptotic.

03

Subpart (b): f(x)=2x+3,g(x)=2x+7Step 1: Calculating the Asymptotic condition:

Given,

f(x)=2x+3g(x)=2x+7

Then,

limxf(x)g(x)=limx2x+32x+7aman=amn=limx2x+3x7=limx24

04

Applying limit x→∞:

Since1=0,

limxf(x)g(x)=124=116

Thus, limxf(x)g(x)1so, f and g are not asymptotic.

05

Subpart (c): f(x)=22x,g(x)=2x2Step 1: Calculating the Asymptotic condition:

Given,

f(x)=22x,g(x)=2x2

Then,

limxf(x)g(x)=limx22x2x2aman=amn=limx22xx2

06

Applying limit x→∞:

Since1=0 anda=

data-custom-editor="chemistry" limxf(x)g(x)=2=

Thus, data-custom-editor="chemistry" limxf(x)g(x)1so, f and g are not asymptotic.

07

Subpart (d): f(x)=2x2+x+1,g(x)=2x2+2xStep 1: Calculating the Asymptotic condition:

Given,

f(x)=2x2+x+1g(x)=2x2+2x

Then,

limxf(x)g(x)=limx2x2+x+12x2+2xaman=amn=limx2x2+x+1x22x=limx21xlimxf(x)g(x)=limx21xxx2

08

Applying limit x→∞:

Since 1=0,

limxf(x)g(x)=20=1

Thus,limxf(x)g(x)1so, f and g are asymptotic.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free