Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(Requires calculus) For each of these pairs of functions, determine whether f and g are asymptotic

  1. f(x)=x2+3x+7,g(x)=x2+10
  2. f(x)=x2logx,g(x)=x3
  3. f(x)=x4+log(3x8+7),g(x)=(x2+17x+3)2
  4. f(x)=(x3+x2+x+1)4,g(x)=(x4+x3+x2+x+1)3

Short Answer

Expert verified

Iflimxf(x)g(x)=1, then f and g are said to be asymptotic.

If limxf(x)g(x)1including limit does not exist, then f and g are said to be not asymptotic.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Subpart (a): f(x)=x2+3x+7,g(x)=x2+10Step 1: Calculating the Asymptotic condition:

Given,

f(x)=x2+3x+7g(x)=x2+10

Then,

limxf(x)g(x)=limxx2+3x+7x2+10=limxx2x2+3xx2+7x2x2x2+10x2=limx1+3x+7x21+10x2

02

Applying limit x→∞:

Since 1=0,

limxf(x)g(x)=log(1)=0

Thus, limxf(x)g(x)1so, f and g are not asymptotic.

03

Subpart (c): f(x)=x4+log⁡(3x8+7),g(x)=(x2+17x+3)2Step 1: Calculating the Asymptotic condition:

Given,

f(x)=x4+log3x8+7g(x)=x2+17x+32

Then,

limxf(x)g(x)=limxx4+log3x8+7x2+17x+32=limxx4+log3x8+7x4+34x3+295x2+102x+9

On dividing the numerator and denominator byx4, we get

limxf(x)g(x)=limx1+log3x8+7x41+34x+295x2+102x3+9x4

04

Applying limit x→∞:

Since1=0,

The termslog3x8+7x4,34x,295x2,102x3,9x4 becomes zero

limxf(x)g(x)=11=1

Thus, limxf(x)g(x)=11so, f and g are asymptotic.

05

Subpart (d): f(x)=(x3+x2+x+1)4,g(x)=(x4+x3+x2+x+1)3Step 1: Calculating the Asymptotic condition:

Given,

f(x)=x3+x2+x+14g(x)=x4+x3+x2+x+13

Then,

limxf(x)g(x)=limxx3+x2+x+14x4+x3+x2+x+13=limxx71+1x+1x2+1x34x71+1x+1x2+1x3+1x43=limx1+1x+1x2+1x341+1x+1x2+1x3+1x43

06

Applying limit x→∞:

Since1=0,

limxf(x)g(x)=11=1

Thus, limxf(x)g(x)=11so, f and g are asymptotic.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free