Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that \(({x^3} + 2x)/(2x + 1)\) is \(O({x^2})\).

Short Answer

Expert verified

The given function\(({x^3} + 2x)/(2x + 1)\)is\(O({x^2})\)when\(k = 2\)and\(C = \frac{3}{2}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1:

First we find the quotient using the long division method.

\(2x + 1\mathop{\left){\vphantom{1\begin{array}{l}{x^3} + 2x\\\underline { - {x^3} - \frac{1}{2}{x^2}} \\0 - \frac{1}{2}{x^2} + 2x\\\underline {0 + \frac{1}{2}{x^2} + \frac{1}{4}x} \\0 + 0 + \frac{9}{4}x\\\underline {0 + 0 - \frac{9}{4}x - \frac{9}{8}} \\0 + 0 + 0 - \frac{9}{8}\end{array}}}\right.

\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}{x^3} + 2x\\\underline { - {x^3} - \frac{1}{2}{x^2}} \\0 - \frac{1}{2}{x^2} + 2x\\\underline {0 + \frac{1}{2}{x^2} + \frac{1}{4}x} \\0 + 0 + \frac{9}{4}x\\\underline {0 + 0 - \frac{9}{4}x - \frac{9}{8}} \\0 + 0 + 0 - \frac{9}{8}\end{array}}}}

\limits^{\displaystyle\,\,\, {\frac{1}{2}{x^2} - \frac{1}{3}x + \frac{2}{8}}}\)

We get,

\(\begin{array}{l}Q = \frac{1}{2}{x^2} - \frac{1}{3}x + \frac{2}{8}\\R = - \frac{9}{8}\end{array}\)

Where,

\(Q = \)Quotient

\(R = \)Remainder`

02

Step 2:

We can now write the fraction as,

\(\begin{array}{l}f(x) = \frac{{{x^3} + 2x}}{{2x + 1}}\\ = \left( {\frac{1}{2}{x^2} - \frac{1}{3}x + \frac{2}{8}} \right) - \frac{{\frac{9}{8}}}{{2x + 1}}\end{array}\)

When\(x > 2\)we get the property\({x^2} > x > \frac{9}{8}\).

When \(x > 0\), we get the property \(\frac{1}{4}x > 0\) and also \(\frac{{\frac{9}{8}}}{{2x + 1}} > 0\).

03

Step 3:

We will take\(k = 2\)and get\(x > 2\)

\(\begin{array}{l}\left| {f(x)} \right| = \left| {(\frac{1}{2}{x^2} - \frac{1}{4}x + \frac{9}{8}) - \frac{{\frac{9}{8}}}{{(2x + 1)}}} \right|\\ \le \left| {\frac{1}{2}{x^2} - \frac{1}{4}x + \frac{9}{8}} \right|\\ \le \left| {\frac{1}{2}{x^2} + \frac{9}{8}} \right|\\ \le \left| {\frac{1}{2}{x^2}} \right| + \left| {\frac{9}{8}} \right|\end{array}\)

\(\begin{array}{l} = 0 \le \frac{1}{2}{x^2} + \frac{9}{8}\\ \le \frac{1}{2}{x^2} + {x^2}\\ = \frac{3}{2}\left| {{x^2}} \right|\end{array}\)

Therefore taking\(C = \frac{3}{2}\)by the definition we get that\(({x^3} + 2x)/(2x + 1)\)is\(O({x^2})\)when \(k = 2\) and \(C = \frac{3}{2}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free