Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that

a) \({x^2}\)is o(\({x^3}\))

b) x log x is o(\({x^2}\))

c) \({x^2}\) is o(\({2^x}\) )

d) \({x^2}\) + x + 1 is not o(\({x^2}\))

Short Answer

Expert verified

Apply definition of Little-O Notation, i.e., f(n) is o(g(n))\( \Rightarrow \)\(\mathop {\lim }\limits_{n \to \infty } \)\(\frac{{f(n)}}{{g(n)}}\) = 0 on given functions.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1:

As given f(x)= \({x^2}\) and g(x)= \({x^3}\) , we will put this in \(\mathop {\lim }\limits_{n \to \infty } \)\(\frac{{f(x)}}{{g(x)}}\).

02

Now, simply solve the limit

\(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^2}}}{{{x^3}}}\)=\(\mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\)=\(\frac{1}{\infty }\)= 0

This implies that \(\mathop {\lim }\limits_{x \to \infty } \frac{{f(x)}}{{g(x)}}\) = 0, \({x^2}\) is o(\({x^3}\))

So, we have shown that \({x^2}\) is o(\({x^3}\)), using definition of Little-O Notation.

03

Subpart (b): x \(\log (x)\)is o(\({x^2}\))Step 1: Our functions are f(x) =x\(\log (x)\) and g(x)= (\({x^2}\))

Determining limit ratios of the functions.

\(\mathop {\lim }\limits_{x \to \infty } \frac{{f(x)}}{{g(x)}}\) = \(\mathop {\lim }\limits_{x \to \infty } \frac{{x\log (x)}}{{{x^2}}}\)

04

Use l’ Hopital’s rule

We have,\(\mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\) = 0

Since the definition of little o notations is \(\mathop {\lim }\limits_{n \to \infty } \frac{{f(n)}}{{g(n)}}\)=0 which we proved to be true. Therefore, \(x\log (x)\) is o(\({x^2}\))

05

Subpart (c): \({x^2}\] is o(\({2^x}\]) Step 1:

Our functions are f(x)= \({x^2}\) and g(x)= \({2^x}\). Determining the limit ratio of the functions.

\(\mathop {\lim }\limits_{x \to \infty } \frac{{f(x)}}{{g(x)}}\)= \(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^2}}}{{{2^x}}}\)

06

Step 2:

Using l’Hopital’s rule, we have:

\(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^2}}}{{{2^x}}}\)=\(\mathop {\lim }\limits_{x \to \infty } \frac{{2x}}{{{2^x}\ln 2}}\)

Using again l’Hopital’s rule, we have:

\(\mathop {\lim }\limits_{x \to \infty } \frac{{2x}}{{{2^x}\ln 2}}\)=\(\mathop {\lim }\limits_{x \to \infty } \frac{2}{{{2^x}{{(\ln 2)}^2}}}\)=0

Since, \(\mathop {\lim }\limits_{x \to \infty } {2^x}\)=∞. Therefore,

\(\mathop {\lim }\limits_{x \to \infty } \frac{{f(x)}}{{g(x)}}\)=\(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^2}}}{{{2^x}}}\)=∞

Since the definition of little o notations is \(\mathop {\lim }\limits_{n \to \infty } \frac{{f(n)}}{{g(n)}}\)=0. Which we proved to be true. Therefore, \({x^2}\)is o(\({2^x}\)).

07

Subpart (d): \({x^2}\)+ x + 1 is not o(\({x^2}\)) Step 1: 

Our functions are f(x)= \({x^2}\)+ x + 1and g(x)=\({x^2}\). Determining the limit ratios of the functions.

\(\mathop {\lim }\limits_{x \to \infty } \frac{{f(x)}}{{g(x)}}\)=\(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^2} + x + 1}}{{{x^2}}}\)

08

Step 2:

Using l’Hopital’s rule, we have:

\(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^2} + x + 1}}{{{x^2}}}\)=\(\mathop {\lim }\limits_{x \to \infty } \frac{{2x}}{{2x}}\)=1

Since the definition of little o notations is \(\mathop {\lim }\limits_{n \to \infty } \frac{{f(n)}}{{g(n)}}\)=0 which we proved to be false. Therefore, f(x)= \({x^2}\)+ x + 1 is not o(\({x^2}\)).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free