Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that each of these pairs of functions are of the same order.

\(\begin{aligned}{l}a){\rm{ }}3x + 7,x{\rm{ }}\\b){\rm{ }}2{x^2} + x - 7,{\rm{ }}{x^2}{\rm{ }}\\c)\left( {x + 1/2} \right),x{\rm{ }}\\d){\rm{ }}log\left( {{x^2} + {\rm{ }}1} \right),{\rm{ }}lo{g_2}{\rm{ }}x{\rm{ }}\\e){\rm{ }}lo{g_{10}}{\rm{ }}x,{\rm{ }}lo{g_2}{\rm{ }}x\end{aligned}\)

Short Answer

Expert verified

a. \(f(x) = 3x + 7\) and \(g\left( x \right) = x\) have the same order.

b. \(f(x) = 2{x^2} + x - 7\) and \(g\left( x \right) = {x^2}\) have the same order.

c. \(f(x) = \left( {x + \frac{1}{2}} \right)\) and \(g\left( x \right) = x\) have the same order.

d. \(f(x) = log\left( {{x^2} + {\rm{ }}1} \right)\) and \(g\left( x \right) = lo{g_2}{\rm{ }}x{\rm{ }}\) have the same order.

e. \(f(x) = lo{g_{10}}{\rm{ }}x\) and \(g\left( x \right) = lo{g_2}{\rm{ }}x\) have the same order.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Write the definitions.

Big-O Notation:Let the real or complex values function is\(f\)and real valued function is\(g\). Then\(f\left( x \right)\)is\(O\left( {g\left( x \right)} \right)\). When there exists a positive real number\(M\)and real number\(k\)such that\(\left| {\left. {f\left( x \right)} \right|} \right. \ge M\left| {\left. {g\left( x \right)} \right|} \right.\forall x > k,\)where\(M\)and\(k\)are not unique.

Big-Omega Notation:Let the real or complex values function is\(f\)and real valued function is\(g\). Then\(f\left( x \right)\)is\(\Omega \left( {g\left( x \right)} \right)\). When there exists a positive real number\(M\)and real number\(k\)such that\(\left| {\left. {f\left( x \right)} \right|} \right. \ge M\left| {\left. {g\left( x \right)} \right|} \right.\forall x > k,\)where\(M\)and\(k\)are not unique.

Big-Theta Notation: If \(f\left( x \right)\) is \(O\left( {g\left( x \right)} \right)\) and \(f\left( x \right)\) is \(\Omega \left( {g\left( x \right)} \right)\), then \(f\left( x \right)\) is \(\Theta \left( {g\left( x \right)} \right)\). So, we can conclude that \(f\) has the same order as \(g\).

02

Show that \(f(x) = 3x + 7\) and \(g\left( x \right) = x\) have the same order.

Part-(a)

Using Big-O notation:

Let us take\(k = 7\), so we have\(x > 7\)

\(\begin{aligned}{l}\left| {\left. {f\left( x \right)} \right|} \right. = \left| {\left. {3x + 7} \right|} \right.\\{\rm{ }} = 3x + 7\\{\rm{ }} > 3x + x\\{\rm{ }} = 4\left| {\left. x \right|} \right.\end{aligned}\)

So, by definition of Big-O notation we have, \(f(x) = 3x + 7\)is \(O\left( x \right)\) having \(k = 7\) and \(M = 4\).

Using Big-Omega notation:

Let us take\(k = 0\), so we have\(x > 0\)

\(\begin{aligned}{l}\left| {\left. {f\left( x \right)} \right|} \right. = \left| {\left. {3x + 7} \right|} \right.\\{\rm{ }} = 3x + 7\\{\rm{ }} > 3x\\{\rm{ }} = 3\left| {\left. x \right|} \right.\end{aligned}\)

So, by definition of Big-Omega notation we have, \(f(x) = 3x + 7\)is \(\Omega \left( x \right)\) having \(k = 0\) and \(M = 3\).

Since \(f(x) = 3x + 7\)is \(O\left( x \right)\) and \(f(x) = 3x + 7\)is \(\Omega \left( x \right)\), so we have \(f(x) = 3x + 7\)is \(\Theta \left( x \right)\) and,

Therefore, \(f(x) = 3x + 7\) and \(g\left( x \right) = x\) have the same order.

03

Show that \(f(x) = 2{x^2} + x - 7\) and \(g\left( x \right) = {x^2}\) have the same order.

Part-(b)

Using Big-O notation:

Let us take\(k = 2\), so we have\(x > 2\)

\(\begin{aligned}{l}\left| {\left. {f\left( x \right)} \right|} \right. = \left| {\left. {2{x^2} + x - 7} \right|} \right.\\{\rm{ }} = 2{x^2} + x - 7\\{\rm{ < }}2{x^2} + x\\{\rm{ = }}2{x^2} + {x^2}\end{aligned}\)

\(\begin{aligned}{l}{\rm{ = }}3{x^2}{\rm{ }}\\{\rm{ = }}3\left| {\left. {{x^2}} \right|} \right.\end{aligned}\)

So, by definition of Big-O notation we have, \(f(x) = 2{x^2} + x - 7\) is \(O\left( {{x^2}} \right)\) having \(k = 2\) and \(M = 3\).

Using Big-Omega notation:

Let us take\(k = 3\), so we have\(x > 3\)

\(\begin{aligned}{l}\left| {\left. {f\left( x \right)} \right|} \right. = \left| {\left. {2{x^2} + x - 7} \right|} \right.\\{\rm{ }} = 2{x^2} + x - 7\\{\rm{ > }}2{x^2} - 7\\{\rm{ > }}\left| {\left. {{x^2}} \right|} \right.\end{aligned}\)

So, by definition of Big-Omega notation we have, \(f(x) = 2{x^2} + x - 7\) is \(\Omega \left( {{x^2}} \right)\) having \(k = 3\) and \(M = 1\).

Since \(f(x) = 2{x^2} + x - 7\)is \(O\left( {{x^2}} \right)\) and\(f(x) = 2{x^2} + x - 7\) is \(\Omega \left( {{x^2}} \right)\), so we have \(f(x) = 2{x^2} + x - 7\)is \(\Theta \left( {{x^2}} \right)\) and,

Therefore, \(f(x) = 2{x^2} + x - 7\) and \(g\left( x \right) = {x^2}\) have the same order.

04

Show that \(f(x) = \left( {x + \frac{1}{2}} \right)\) and \(g\left( x \right) = x\) have the same order.

Part-(c)

Using Big-Omega notation:

Let us take\(k = 1\), so we have\(x > 1\)

\(\begin{aligned}{l}\left| {\left. {f\left( x \right)} \right|} \right. = \left| {\left. {\left( {x + \frac{1}{2}} \right)} \right|} \right.\\{\rm{ }} = x + {\raise0.7ex\hbox{$1$} \!\mathord{\left/

{\vphantom {1 2}}\right.\kern-\nulldelimiterspace}

\!\lower0.7ex\hbox{$2$}}\\{\rm{ }} > x\\{\rm{ }} = \left| {\left. x \right|} \right.\end{aligned}\)

So, by definition of Big-O notation we have, \(f(x) = \left( {x + \frac{1}{2}} \right)\) is \(\Omega \left( x \right)\) having \(k = 1\) and \(M = 1\).

Using Big-O notation:

Let us take\(k = 1\), so we have\(x > 1\)

\(\begin{aligned}{l}\left| {\left. {f\left( x \right)} \right|} \right. = \left| {\left. {\left( {x + \frac{1}{2}} \right)} \right|} \right.\\{\rm{ }} = \left( {x + \frac{1}{2}} \right)\\{\rm{ < }}x + \frac{1}{2}\\{\rm{ < }}x + x\end{aligned}\)

\(\begin{aligned}{l}{\rm{ = 2}}x{\rm{ }}\\{\rm{ = 2}}\left| {\left. x \right|} \right.\end{aligned}\)

So, by definition of Big-O notation we have, \(f(x) = \left( {x + \frac{1}{2}} \right)\) is \(O\left( x \right)\) having \(k = 1\) and \(M = 2\).

Since \(f(x) = \left( {x + \frac{1}{2}} \right)\) is \(O\left( x \right)\) and\(f(x) = \left( {x + \frac{1}{2}} \right)\) is \(\Omega \left( x \right)\), so we have \(f(x) = \left( {x + \frac{1}{2}} \right)\)is \(\Theta \left( x \right)\) and,

Therefore, \(f(x) = \left( {x + \frac{1}{2}} \right)\) and \(g\left( x \right) = x\) have the same order.

05

Show that \(f(x) = log\left( {{x^2} + {\rm{ }}1} \right)\) and \(g\left( x \right) = lo{g_2}{\rm{ }}x\) have the same order.

Part-(d)

Using Big-O notation:

Let us take\(k = 2\), so we have\(x > 2\)

\(\begin{aligned}{l}\left| {\left. {f\left( x \right)} \right|} \right. = \left| {\left. {log\left( {{x^2} + {\rm{ }}1} \right)} \right|} \right.\\{\rm{ }} = log\left( {{x^2} + {\rm{ }}1} \right)\\{\rm{ < }}lo{g_2}\left( {{x^2} + {\rm{ }}1} \right)\\{\rm{ < }}lo{g_2}\left( {{x^2} + {\rm{ }}{x^2}} \right)\end{aligned}\)

\(\begin{aligned}{l}{\rm{ = }}lo{g_2}\left( {2{x^2}} \right){\rm{ }}\\ < lo{g_2}\left( {4{x^2}} \right)\\ = lo{g_2}\left( {{{\left( {2x} \right)}^2}} \right)\\ = 2lo{g_2}\left( {2x} \right)\end{aligned}\)

\(\begin{aligned}{l} < 2lo{g_2}\left( {{x^2}} \right)\\ = 4lo{g_2}x\\ = 4\left| {\left. {lo{g_2}} \right|} \right.\end{aligned}\)

So, by definition of Big-O notation we have, \(f(x) = log\left( {{x^2} + {\rm{ }}1} \right)\) is \(O\left( {lo{g_2}{\rm{ }}x{\rm{ }}} \right)\) having \(k = 2\) and \(M = 4\).

Using Big-Omega notation:

Let us take\(k = 1\), so we have\(x > 1\)

\(\begin{aligned}{l}\left| {\left. {f\left( x \right)} \right|} \right. = \left| {\left. {log\left( {{x^2} + {\rm{ }}1} \right)} \right|} \right.\\{\rm{ }} = log\left( {{x^2} + {\rm{ }}1} \right)\\{\rm{ = }}\frac{{lo{g_2}\left( {{x^2} + {\rm{ }}1} \right)}}{{lo{g_2}\left( {10} \right)}}\\{\rm{ > }}\frac{{lo{g_2}\left( x \right)}}{{lo{g_2}\left( {10} \right)}}\end{aligned}\)

\( = \frac{1}{{lo{g_2}\left( {10} \right)}}\left| {\left. {lo{g_2}\left( x \right)} \right|} \right.\)

So, by definition of Big-Omega notation we have, \(f(x) = log\left( {{x^2} + {\rm{ }}1} \right)\) is \(\Omega \left( {lo{g_2}{\rm{ }}x{\rm{ }}} \right)\) having \(k = 1\) and \(M = = \frac{1}{{lo{g_2}\left( {10} \right)}}\).

Since \(f(x) = log\left( {{x^2} + {\rm{ }}1} \right)\) is \(O\left( {lo{g_2}{\rm{ }}x{\rm{ }}} \right)\) and\(f(x) = log\left( {{x^2} + {\rm{ }}1} \right)\) is \(\Omega \left( {lo{g_2}{\rm{ }}x{\rm{ }}} \right)\), so we have \(f(x) = log\left( {{x^2} + {\rm{ }}1} \right)\)is \(\Theta \left( {lo{g_2}{\rm{ }}x{\rm{ }}} \right)\) and,

Therefore, \(f(x) = log\left( {{x^2} + {\rm{ }}1} \right)\) and \(g\left( x \right) = lo{g_2}{\rm{ }}x{\rm{ }}\) have the same order.

06

Show that \(f(x) = lo{g_{10}}{\rm{ }}x\) and \(g\left( x \right) = lo{g_2}{\rm{ }}x\) have the same order.

Part-(e)

Using Big-O notation:

Let us take\(k = 1\), so we have\(x > 1\)

\(\begin{aligned}{l}\left| {\left. {f\left( x \right)} \right|} \right. = \left| {\left. {lo{g_{10}}{\rm{ }}x} \right|} \right.\\{\rm{ }} = lo{g_{10}}{\rm{ }}x\\{\rm{ < }}lo{g_2}{\rm{ }}x\\{\rm{ < }}\left| {\left. {lo{g_2}{\rm{ }}x} \right|} \right.\end{aligned}\)

So, by definition of Big-O notation we have, \(f(x) = lo{g_{10}}{\rm{ }}x\) is \(O\left( {lo{g_2}{\rm{ }}x{\rm{ }}} \right)\) having \(k = 1\) and \(M = 1\).

Using Big-Omega notation:

Let us take\(k = 1\), so we have\(x > 1\)

\(\begin{aligned}{l}\left| {\left. {f\left( x \right)} \right|} \right. = \left| {\left. {lo{g_{10}}{\rm{ }}x} \right|} \right.\\{\rm{ }} = lo{g_{10}}{\rm{ }}x\\{\rm{ = }}\frac{{lo{g_2}\left( x \right)}}{{lo{g_{10}}\left( {10} \right)}}\\{\rm{ = }}\frac{1}{{lo{g_{10}}\left( {10} \right)}}\left| {\left. {lo{g_2}{\rm{ }}x} \right|} \right.\end{aligned}\)

So, by definition of Big-O notation we have, \(f(x) = lo{g_{10}}{\rm{ }}x\) is \(\Omega \left( {lo{g_2}{\rm{ }}x{\rm{ }}} \right)\) having \(k = 1\) and \(M = \frac{1}{{lo{g_{10}}\left( {10} \right)}}\).

Since \(f(x) = lo{g_{10}}{\rm{ }}x\) is \(O\left( {lo{g_2}{\rm{ }}x{\rm{ }}} \right)\) and\(f(x) = lo{g_{10}}{\rm{ }}x\) is \(\Omega \left( {lo{g_2}{\rm{ }}x{\rm{ }}} \right)\), so we have \(f(x) = lo{g_{10}}{\rm{ }}x\)is \(\Theta \left( {lo{g_2}{\rm{ }}x{\rm{ }}} \right)\) and,

Therefore, \(f(x) = lo{g_{10}}{\rm{ }}x\) and \(g\left( x \right) = lo{g_2}{\rm{ }}x\) have the same order.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free