Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine whether each of these function is \(O({x^2})\).

a) \(f(x) = 17x + 11\)

b)\(f(x) = {x^2} + 1000\)

c)\(f(x) = x\log x\)

d)\(f(x) = {x^4}/2\)

e)\(f(x) = {2^x}\)

f)\(f(x) = \left\lfloor x \right\rfloor .\left\lceil x \right\rceil \)

Short Answer

Expert verified

a) The function\(f(x) = 17x + 11\)is\(O({x^2})\)with \(C = 1\) and \(k = 18\).

b) The function\(f(x) = {x^2} + 1000\)is \(O({x^2})\)with \(C = 2\) and \(k = 100\).

c) The function \(f(x) = x\log x\)is \(O({x^2})\)with \(C = 1\) and \(k = 0\).

d) The function\(f(x) = {x^4}/2\)is not\(O(x)\).

e) The function\(f(x) = {2^x}\)is not\(O({x^2})\).

f) The function\(f(x) = \left\lfloor x \right\rfloor .\left\lceil x \right\rceil \)is\(O({x^2})\)with \(C = 2\) and \(k = 1\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Subpart a) \(f(x) = 17x + 11\)Step 1:

Taking\(k = 18\)such that\(x > 18\),

We get,

\(\begin{aligned}{l}\left| {f(x)} \right| = \left| {17x + 11} \right|\\ = \left| {f(x)} \right| \le C\left| {g(x)} \right|\\ = \left| {17x + 11} \right| \le C\left| {(x)} \right|\\ = C\left| {g(x)} \right|\end{aligned}\)

02

(a) Step 2: 

\(\begin{aligned}{l}\left| {f(x)} \right| = \left| {17x + 11} \right| \le \left| {17x} \right| + \left| {11} \right|\\ = 17x + 11 \le 18x\\ < x.x\\ = \left| {{x^2}} \right|\end{aligned}\)

Thus we take\(C = 1\)and by the definition the function\(f(x) = 17x + 11\)is\(O({x^2})\)with \(C = 1\) and \(k = 18\).

03

Subpart b) \(f(x) = {x^2} + 1000\)Step 1:

Taking\(k = 100\)such that\(x > 100\),

We get,

\(\begin{aligned}{l}\left| {f(x)} \right| = \left| {{x^2} + 1000} \right|\\ = \left| {f(x)} \right| \le C\left| {g(x)} \right|\\ = \left| {{x^2} + 1000} \right| \le C\left| {(x)} \right|\\ = C\left| {g(x)} \right|\end{aligned}\)

04

(b) Step 2: 

We have\(x > 100\),

\(\begin{aligned}{l}\left| {f(x)} \right| = \left| {{x^2} + 1000} \right| \le \left| {{x^2}} \right| + \left| {1000} \right|\\ = {x^2} + 1000 < {x^2} + {x^2}\\ = 2\left| {{x^2}} \right|\end{aligned}\)

Thus we take\(C = 2\)and by the definition the function\(f(x) = {x^2} + 1000\)is\(O({x^2})\)with \(C = 2\) and \(k = 100\).

05

Subpart c) \(f(x) = x\log x\)Step 1:

Taking\(k = 0\)such that\(x > 0\),

We get,

\(\begin{aligned}{l}\left| {f(x)} \right| = \left| {x\log x} \right|\\ = \left| {f(x)} \right| \le C\left| {g(x)} \right|\\ = \left| {x\log x} \right| \le C\left| {(x)} \right|\\ = C\left| {g(x)} \right|\end{aligned}\)

06

(c) Step 2: 

Using the property\(\log x \le x\)when\(x > 0\),

\(\begin{aligned}{l}\left| {f(x)} \right| = \left| {x.\log x} \right| \le \left| {x.x} \right|\\ = \left| {{x^2}} \right|\end{aligned}\)

Thus we take\(C = 1\)and by the definition the function\(f(x) = x\log x\)is\(O({x^2})\)with \(C = 1\) and \(k = 0\).

07

Subpart d) \(f(x) = {x^4}/2\)Step 1:

The value of \({x^4}\) increases with the increase in the value of \(x\).

08

(d) Step 2: 

When the value of\(x\)increases, then the value of the constant\(C\)will also increase.

The inequality will be,

\(\frac{{{x^4}}}{2} \le C\left| x \right|\)

Thus by the definition the function\(f(x) = {x^4}/2\)is not\(O(x)\).

Subpart e)\(f(x) = {2^x}\)

09

Subpart e) \(f(x) = {2^x}\)Step 1:

We prove this using the contradiction method.

\(\begin{aligned}{l}\left| {f(x)} \right| = \left| {{2^x}} \right|\\ = \left| {f(x)} \right| \le C\left| {g(x)} \right|\\ = {2^x} \le C{x^2} = C\left| {{x^2}} \right|\\ = C\left| {g(x)} \right|\end{aligned}\)

10

(e) Step 2: 

If\(x > k\)then we get the inequality\({2^x} \le C{x^2}\)to\(C\),

\(C > \frac{{{2^x}}}{{{x^2}}}\)

Taking limit on both the sides,

\(\mathop {\lim }\limits_{x \to \infty } C \ge \mathop {\lim }\limits_{x \to \infty } \frac{{{2^x}}}{{{x^2}}}\)

We get,

\(C \ge + \infty \).

But\(C\)is a constant.

This is a contradiction.

Thus we cannot get a value for \(C\).

Therefore the function\(f(x) = {2^x}\)is not\(O({x^2})\).

11

Subpart f) \(f(x) = \left\lfloor x \right\rfloor .\left\lceil x \right\rceil \)Step 1:

Taking\(k = 1\)such that\(x > 1\),

We get,

\(\begin{aligned}{l}\left| {f(x)} \right| = \left| {\left\lfloor x \right\rfloor .\left\lceil x \right\rceil } \right|\\ = \left| {f(x)} \right| \le C\left| {g(x)} \right|\\ = \left| {\left\lfloor x \right\rfloor .\left\lceil x \right\rceil } \right| \le C\left| {(x)} \right|\\ = C\left| {g(x)} \right|\end{aligned}\)

12

(f) Step 2: 

By the definition of floor and ceiling functions we get,

\(\begin{aligned}{l}\left| {f(x)} \right| = \left| {\left\lfloor x \right\rfloor .\left\lceil x \right\rceil } \right| \le x.(x + 1)\\ = {x^2} + x < {x^2} + {x^2}\\ = 2\left| {{x^2}} \right|\end{aligned}\)

Thus we take\(C = 2\)and by the definition the function\(f(x) = \left\lfloor x \right\rfloor .\left\lceil x \right\rceil \)is\(O({x^2})\)with \(C = 2\) and \(k = 1\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free