Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For each function in Exercise 2, determine whether that function is \(\Omega \left( {{x^2}} \right)\) and whether it is \(\Theta \left( {{x^2}} \right)\).

Short Answer

Expert verified

a.\(f\left( x \right) = 17x + 11\)is not\(\Omega \left( {{x^2}} \right)\)and\(f\left( x \right)\)is not\(\Theta \left( {{x^2}} \right)\)

b.\(f\left( x \right) = {x^2} + 1000\)is\(\Omega \left( {{x^2}} \right)\)and\(f\left( x \right)\)is\(\Theta \left( {{x^2}} \right)\)

c.\(f\left( x \right) = x\log x\)is not\(\Omega \left( {{x^2}} \right)\)and\(f\left( x \right)\)is not\(\Theta \left( {{x^2}} \right)\)

d.\(f\left( x \right) = \frac{{{x^4}}}{2}\)is \(\Omega \left( {{x^2}} \right)\)and\(f\left( x \right)\)is not\(\Theta \left( {{x^2}} \right)\)

e.\(f\left( x \right) = {2^x}\)is\(\Omega \left( {{x^2}} \right)\)and\(f\left( x \right)\)is not\(\Theta \left( {{x^2}} \right)\)

f. \(f\left( x \right) = \left( x \right)\left( x \right)\) is \(\Omega \left( {{x^2}} \right)\) and \(f\left( x \right)\) is \(\Theta \left( {{x^2}} \right)\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Determine whether the function is \(\Omega \left( {{x^2}} \right)\) and whether it is \(\Theta \left( {{x^2}} \right)\).

From Exercise 2 part (a) we have:

\(f\left( x \right) = 17x + 11\)is\(O\left( {{x^2}} \right)\)

Consider,

\(\begin{aligned}{l}f\left( x \right) = 17x + 11\\{\rm{ }} \le {x^2}\end{aligned}\)

That is contradict the definition of Big-Omega notation. So,\(f\left( x \right) = 17x + 11\)is not\(\Omega \left( {{x^2}} \right)\).

Therefore, \(f\left( x \right) = 17x + 11\) is not \(\Theta \left( {{x^2}} \right)\).

02

Determine whether the function is \(\Omega \left( {{x^2}} \right)\) and whether it is \(\Theta \left( {{x^2}} \right)\).

From Exercise 2 part (b) we have:

\(f\left( x \right) = {x^2} + 1000\)is\(O\left( {{x^2}} \right)\)

Consider,

\(\begin{aligned}{l}f\left( x \right) = {x^2} + 1000\\{\rm{ }} > {x^2}\end{aligned}\)

So, by definition of Big-Omega notation we have,\(f\left( x \right) = {x^2} + 1000\)is\(\Omega \left( {{x^2}} \right)\).

Since, \(f\left( x \right) = {x^2} + 1000\) is \(O\left( {{x^2}} \right)\) and \(f\left( x \right) = {x^2} + 1000\) is \(\Omega \left( {{x^2}} \right)\).Therefore, \(f\left( x \right) = {x^2} + 1000\) is \(\Theta \left( {{x^2}} \right)\).

03

Determine whether the function is \(\Omega \left( {{x^2}} \right)\) and whether it is \(\Theta \left( {{x^2}} \right)\).

From Exercise 2 part (c) we have:

\(f\left( x \right) = x\log x\)is\(O\left( {{x^2}} \right)\)

Consider,

\(\begin{aligned}{l}{\rm{ }}f\left( x \right) = x\log x\\\left( {\log x \le x,\forall x} \right) = {x^2}\end{aligned}\)

That is contradict the definition of Big-Omega notation. So,\(f\left( x \right) = x\log x\)is not\(\Omega \left( {{x^2}} \right)\).

Therefore, \(f\left( x \right) = x\log x\) is not \(\Theta \left( {{x^2}} \right)\).

04

Determine whether the function is \(\Omega \left( {{x^2}} \right)\) and whether it is \(\Theta \left( {{x^2}} \right)\).

From Exercise 2 part (d) we have:

\(f\left( x \right) = \frac{{{x^4}}}{2}\)is not\(O\left( {{x^2}} \right)\)

Consider,

\(\begin{aligned}{l}f\left( x \right) = \frac{{{x^4}}}{2}\\{\rm{ }} \ge {x^2}\end{aligned}\)

So, by definition of Big-Omega notation we have\(f\left( x \right) = \frac{{{x^4}}}{2}\)is\(\Omega \left( {{x^2}} \right)\).

Since, \(f\left( x \right) = \frac{{{x^4}}}{2}\) is not \(O\left( {{x^2}} \right)\) and \(f\left( x \right) = \frac{{{x^4}}}{2}\) is \(\Omega \left( {{x^2}} \right)\). Therefore, \(f\left( x \right) = \frac{{{x^4}}}{2}\) is not \(\Theta \left( {{x^2}} \right)\).

05

Determine whether the function is \(\Omega \left( {{x^2}} \right)\) and whether it is \(\Theta \left( {{x^2}} \right)\).

From Exercise 2 part (e) we have:

\(f\left( x \right) = {2^x}\)is not\(O\left( {{x^2}} \right)\)

Consider,

\(\begin{aligned}{l}f\left( x \right) = {2^x}\\{\rm{ }} \ge {x^2}\end{aligned}\)

So, by definition of Big-Omega notation we have,\(f\left( x \right) = {2^x}\)is\(\Omega \left( {{x^2}} \right)\).

Since, \(f\left( x \right) = {2^x}\) is not \(O\left( {{x^2}} \right)\)and \(f\left( x \right) = {2^x}\) is \(\Omega \left( {{x^2}} \right)\). Therefore, \(f\left( x \right) = {2^x}\) is \(\Theta \left( {{x^2}} \right)\).

06

Determine whether the function is \(\Omega \left( {{x^2}} \right)\) and whether it is \(\Theta \left( {{x^2}} \right)\).

From Exercise 2 part (b) we have:

\(f\left( x \right) = \left( x \right)\left( x \right)\)is\(O\left( {{x^2}} \right)\)

Consider,

When\(x > 1\)

\( \ge {x^2}\)

So, by definition of Big-Omega notation we have,\(f\left( x \right) = \left( x \right)\left( x \right)\)is\(\Omega \left( {{x^2}} \right)\).

Since, \(f\left( x \right) = \left( x \right)\left( x \right)\) is \(O\left( {{x^2}} \right)\) and \(f\left( x \right) = \left( x \right)\left( x \right)\) is \(\Omega \left( {{x^2}} \right)\).Therefore, \(f\left( x \right) = \left( x \right)\left( x \right)\) is \(\Theta \left( {{x^2}} \right)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free