Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Give a big-O estimate for each of these functions. For the function \(g\)in your estimate \[f\left( x \right)\] is \[O\left( {g\left( x \right)} \right),\] use a simple function \(g\) of smallest order.

\[\begin{array}{l}a){\rm{ }}\left( {{n^3} + {n^2}log{\rm{ }}n} \right)\left( {log{\rm{ }}n + 1} \right){\rm{ }} + {\rm{ }}\left( {17{\rm{ }}log{\rm{ }}n + 19} \right)\left( {{n^3} + 2} \right)\\b){\rm{ }}\left( {{2^n} + {\rm{ }}{n^2}} \right)\left( {{n^3} + {\rm{ }}{3^n}} \right)\\c){\rm{ }}\left( {{n^n} + {\rm{ }}n{2^n} + {\rm{ }}{5^n}} \right)(n!{\rm{ }} + {\rm{ }}{5^n})\end{array}\]

Short Answer

Expert verified

a. The big-\(O\)estimate for the function\[\left( {{n^3} + {n^2}log{\rm{ }}n} \right)\left( {log{\rm{ }}n + 1} \right){\rm{ }} + {\rm{ }}\left( {17{\rm{ }}log{\rm{ }}n + 19} \right)\left( {{n^3} + 2} \right)\]is\(O\left( {{n^3}\log n} \right)\).

b. The big-\(O\)estimate for the function\(\left( {{2^n} + {\rm{ }}{n^2}} \right)\left( {{n^3} + {\rm{ }}{3^n}} \right)\)is\(O\left( {{6^n}} \right)\).

c. The big-\(O\) estimate for the function \[\left( {{n^n} + {\rm{ }}n{2^n} + {\rm{ }}{5^n}} \right)(n!{\rm{ }} + {\rm{ }}{5^n})\] is \(O\left( {{n^n}n!} \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Simplify \[\left( {{n^3} + {n^2}log{\rm{ }}n} \right)\left( {log{\rm{ }}n + 1} \right){\rm{ }} + {\rm{ }}\left( {17{\rm{ }}log{\rm{ }}n + 19} \right)\left( {{n^3} + 2} \right)\] to determine the biggest term.

Part- (a)

Assuming the given function is\(f(n) = \left( {{n^3} + {n^2}log{\rm{ }}n} \right)\left( {log{\rm{ }}n + 1} \right){\rm{ }} + {\rm{ }}\left( {17{\rm{ }}log{\rm{ }}n + 19} \right)\left( {{n^3} + 2} \right)\)

Simplifying the function\(f(n) = \left( {{n^3} + {n^2}log{\rm{ }}n} \right)\left( {log{\rm{ }}n + 1} \right){\rm{ }} + {\rm{ }}\left( {17{\rm{ }}log{\rm{ }}n + 19} \right)\left( {{n^3} + 2} \right)\)

\(\begin{array}{l} \Rightarrow f(n) = \left( {{n^3}\log n + {n^3} + {n^2}{{\log }^2}(n) + {n^2}\log (n)} \right) + \left( {17{n^3}\log n + 34\log n + 19{n^3} + 19} \right)\\ \Rightarrow f(n) = 18{n^3}\log n + 20{n^3} + {n^2}{\log ^2}(n) + {n^2}\log (n) + 34\log n + 19\end{array}\)

Since the biggest term in the \(f\left( n \right)\) is \({n^3}\log n\). Therefore, the function\(f(n) = \left( {{n^3} + {n^2}log{\rm{ }}n} \right)\left( {log{\rm{ }}n + 1} \right){\rm{ }} + {\rm{ }}\left( {17{\rm{ }}log{\rm{ }}n + 19} \right)\left( {{n^3} + 2} \right)\) is \(O\left( {{n^3}\log n} \right)\).

02

Simplify \[\left( {{2^n} + {\rm{ }}{n^2}} \right)\left( {{n^3} + {\rm{ }}{3^n}} \right)\] to determine the biggest term.

Part-(b)

Assuming the given function is\(f(n) = \left( {{2^n} + {\rm{ }}{n^2}} \right)\left( {{n^3} + {\rm{ }}{3^n}} \right)\)

Simplifying the function\(f(n) = \left( {{2^n} + {\rm{ }}{n^2}} \right)\left( {{n^3} + {\rm{ }}{3^n}} \right)\)

\(\begin{array}{l} \Rightarrow f(n) = {2^n}{n^3} + {n^2}{n^3} + {2^n}{3^n} + {n^2}{3^n}\\ \Rightarrow f(n) = {6^n} + {n^5} + {2^n}{n^3} + {n^2}{3^n}\end{array}\)

Since the biggest term in the \(f\left( n \right)\) is \({6^n}\). Therefore, the function \(f(n) = \left( {{2^n} + {\rm{ }}{n^2}} \right)\left( {{n^3} + {\rm{ }}{3^n}} \right)\) is \(O\left( {{6^n}} \right)\).

03

Simplify \[\left( {n!{\rm{ }} + {\rm{ }}2n} \right)\left( {{n^3}{\rm{ }} + {\rm{ }}log\left( {{n^2}{\rm{ }} + {\rm{ }}1} \right)} \right)\] to determine the biggest term.

Part-(c)

Assuming the given function is\(f(n) = \left( {{n^n} + {\rm{ }}n{2^n} + {\rm{ }}{5^n}} \right)(n!{\rm{ }} + {\rm{ }}{5^n})\)

Simplifying the function\(f(n) = \left( {{n^n} + {\rm{ }}n{2^n} + {\rm{ }}{5^n}} \right)(n!{\rm{ }} + {\rm{ }}{5^n})\)

\( \Rightarrow f(n) = {n^n}n! + {n^n}{5^n} + n{2^n}n! + n{2^n}{5^n} + {5^n}n! + {5^n}{5^n}\)

Since the biggest term in the \(f\left( n \right)\) is \({n^n}n!\). Therefore, the function \(f(n) = \left( {{n^n} + {\rm{ }}n{2^n} + {\rm{ }}{5^n}} \right)(n!{\rm{ }} + {\rm{ }}{5^n})\) is \(O\left( {{n^n}n!} \right)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free