Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Give as good a big-O estimate as possible for each of these functions.

\(\begin{aligned}{*{20}{l}}{a){\rm{ }}\left( {{n^2}{\rm{ }} + {\rm{ }}8} \right)\left( {n{\rm{ }} + {\rm{ }}1} \right)}\\{b){\rm{ }}\left( {n{\rm{ }}log{\rm{ }}n{\rm{ }} + {\rm{ }}{n^2}} \right)\left( {{n^3}{\rm{ }} + {\rm{ }}2} \right)}\\{c){\rm{ }}\left( {n!{\rm{ }} + {\rm{ }}2n} \right)\left( {{n^3}{\rm{ }} + {\rm{ }}log\left( {{n^2}{\rm{ }} + {\rm{ }}1} \right)} \right)}\end{aligned}\)

Short Answer

Expert verified

a. The big-\(O\)estimate for the function\(\left( {{n^2}{\rm{ }} + {\rm{ }}8} \right)\left( {n{\rm{ }} + {\rm{ }}1} \right)\)is\(O\left( {{n^3}} \right)\).

b. The big-\(O\)estimate for the function\(\left( {n{\rm{ }}log{\rm{ }}n{\rm{ }} + {\rm{ }}{n^2}} \right)\left( {{n^3}{\rm{ }} + {\rm{ }}2} \right)\)is\(O\left( {{n^5}} \right)\).

c. The big-\(O\) estimate for the function \(\left( {n!{\rm{ }} + {\rm{ }}2n} \right)\left( {{n^3}{\rm{ }} + {\rm{ }}log\left( {{n^2}{\rm{ }} + {\rm{ }}1} \right)} \right)\) is \(O\left( {{n^3}n!} \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Simplify \(\left( {{n^2}{\rm{ }} + {\rm{ }}8} \right)\left( {n{\rm{ }} + {\rm{ }}1} \right)\) to determine the biggest term.

Part- (a)

Assuming the given function is\(f(n) = \left( {{n^2}{\rm{ }} + {\rm{ }}8} \right)\left( {n{\rm{ }} + {\rm{ }}1} \right)\)

Simplifying the function\(f(n) = \left( {{n^2}{\rm{ }} + {\rm{ }}8} \right)\left( {n{\rm{ }} + {\rm{ }}1} \right)\)

\( \Rightarrow f(n) = {n^3} + {n^2} + 8n + 8\)

Since the biggest term in the \(f\left( n \right)\) is \({n^3}\). Therefore, the function \(f(n) = \left( {{n^2}{\rm{ }} + {\rm{ }}8} \right)\left( {n{\rm{ }} + {\rm{ }}1} \right)\) is \(O\left( {{n^3}} \right)\).

02

Simplify \(\left( {n{\rm{ }}log{\rm{ }}n{\rm{ }} + {\rm{ }}{n^2}} \right)\left( {{n^3}{\rm{ }} + {\rm{ }}2} \right)\) to determine the biggest term.

Part-(b)

Assuming the given function is\(f(n) = \left( {n{\rm{ }}log{\rm{ }}n{\rm{ }} + {\rm{ }}{n^2}} \right)\left( {{n^3}{\rm{ }} + {\rm{ }}2} \right)\)

Simplifying the function\(f(n) = \left( {n{\rm{ }}log{\rm{ }}n{\rm{ }} + {\rm{ }}{n^2}} \right)\left( {{n^3}{\rm{ }} + {\rm{ }}2} \right)\)

\( \Rightarrow f(n) = {n^5} + {n^4}\log n + 2{n^2} + 2n\log n\)

Since the biggest term in the \(f\left( n \right)\) is \({n^5}\). Therefore, the function \(f(n) = \left( {n{\rm{ }}log{\rm{ }}n{\rm{ }} + {\rm{ }}{n^2}} \right)\left( {{n^3}{\rm{ }} + {\rm{ }}2} \right)\) is \(O\left( {{n^5}} \right)\).

03

Simplify \(\left( {n!{\rm{ }} + {\rm{ }}2n} \right)\left( {{n^3}{\rm{ }} + {\rm{ }}log\left( {{n^2}{\rm{ }} + {\rm{ }}1} \right)} \right)\) to determine the biggest term.

Part-(c)

Assuming the given function is\(f(n) = \left( {n!{\rm{ }} + {\rm{ }}2n} \right)\left( {{n^3}{\rm{ }} + {\rm{ }}log\left( {{n^2}{\rm{ }} + {\rm{ }}1} \right)} \right)\)

Simplifying the function\(f(n) = \left( {n!{\rm{ }} + {\rm{ }}2n} \right)\left( {{n^3}{\rm{ }} + {\rm{ }}log\left( {{n^2}{\rm{ }} + {\rm{ }}1} \right)} \right)\)

\( \Rightarrow f(n) = {n^3}n! + {n^4}\log \left( {{n^2} + 1} \right)n! + {2^n}{n^3} + {2^n}\log \left( {{n^2} + 1} \right)\)

Since the biggest term in the \(f\left( n \right)\) is \({n^3}n!\). Therefore, the function \(f(n) = \left( {n!{\rm{ }} + {\rm{ }}2n} \right)\left( {{n^3}{\rm{ }} + {\rm{ }}log\left( {{n^2}{\rm{ }} + {\rm{ }}1} \right)} \right)\) is \(O\left( {{n^3}n!} \right)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free